Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
1.
Nucleic Acids Res ; 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38842939

RESUMO

Prolyl-tRNA synthetases (ProRSs) are unique among aminoacyl-tRNA synthetases (aaRSs) in having two distinct structural architectures across different organisms: prokaryote-like (P-type) and eukaryote/archaeon-like (E-type). Interestingly, Bacillus thuringiensis harbors both types, with P-type (BtProRS1) and E-type ProRS (BtProRS2) coexisting. Despite their differences, both enzymes are constitutively expressed and functional in vivo. Similar to BtProRS1, BtProRS2 selectively charges the P-type tRNAPro and displays higher halofuginone tolerance than canonical E-type ProRS. However, these two isozymes recognize the primary identity elements of the P-type tRNAPro-G72 and A73 in the acceptor stem-through distinct mechanisms. Moreover, BtProRS2 exhibits significantly higher tolerance to stresses (such as heat, hydrogen peroxide, and dithiothreitol) than BtProRS1 does. This study underscores how an E-type ProRS adapts to a P-type tRNAPro and how it may contribute to the bacterium's survival under stress conditions.

2.
Protein Sci ; 33(6): e5028, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38757396

RESUMO

Prolyl-tRNA synthetase (ProRS), belonging to the family of aminoacyl-tRNA synthetases responsible for pairing specific amino acids with their respective tRNAs, is categorized into two distinct types: the eukaryote/archaeon-like type (E-type) and the prokaryote-like type (P-type). Notably, these types are specific to their corresponding cognate tRNAs. In an intriguing paradox, Thermus thermophilus ProRS (TtProRS) aligns with the E-type ProRS but selectively charges the P-type tRNAPro, featuring the bacterium-specific acceptor-stem elements G72 and A73. This investigation reveals TtProRS's notable resilience to the inhibitor halofuginone, a synthetic derivative of febrifugine emulating Pro-A76, resembling the characteristics of the P-type ProRS. Furthermore, akin to the P-type ProRS, TtProRS identifies its cognate tRNA through recognition of the acceptor-stem elements G72/A73, along with the anticodon elements G35/G36. However, in contrast to the P-type ProRS, which relies on a strictly conserved R residue within the bacterium-like motif 2 loop for recognizing G72/A73, TtProRS achieves this through a non-conserved sequence, RTR, within the otherwise non-interacting eukaryote-like motif 2 loop. This investigation sheds light on the adaptive capacity of a typically conserved housekeeping enzyme to accommodate a novel substrate.


Assuntos
Aminoacil-tRNA Sintetases , Thermus thermophilus , Thermus thermophilus/enzimologia , Thermus thermophilus/genética , Aminoacil-tRNA Sintetases/metabolismo , Aminoacil-tRNA Sintetases/química , Aminoacil-tRNA Sintetases/genética , Especificidade por Substrato , Evolução Molecular , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Quinazolinonas/química , Quinazolinonas/metabolismo , RNA de Transferência/metabolismo , RNA de Transferência/química , RNA de Transferência/genética , Piperidinas
3.
J Neuroimmune Pharmacol ; 19(1): 11, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38530514

RESUMO

Neuro-inflammation involves distinct alterations of microglial phenotypes, containing nocuous pro-inflammatory M1-phenotype and neuroprotective anti-inflammatory M-phenotype. Currently, there is no effective treatment for modulating such alterations. M1/M2 marker of primary microglia influenced by Melatonin were detected via qPCR. Functional activities were explored by western blotting, luciferase activity, EMSA, and ChIP assay. Structure interaction was assessed by molecular docking and LIGPLOT analysis. ER-stress detection was examined by ultrastructure TEM, calapin activity, and ERSE assay. The functional neurobehavioral evaluations were used for investigation of Melatonin on the neuroinflammation in vivo. Melatonin had targeted on Peroxisome Proliferator Activated Receptor Delta (PPARδ) activity, boosted LPS-stimulated alterations in polarization from the M1 to the M2 phenotype, and thereby inhibited NFκB-IKKß activation in primary microglia. The PPARδ agonist L-165,041 or over-expression of PPARδ plasmid (ov-PPARδ) showed similar results. Molecular docking screening, dynamic simulation approaches, and biological studies of Melatonin showed that the activated site was located at PPARδ (phospho-Thr256-PPARδ). Activated microglia had lowered PPARδ activity as well as the downstream SIRT1 formation via enhancing ER-stress. Melatonin, PPARδ agonist and ov-PPARδ all effectively reversed the above-mentioned effects. Melatonin blocked ER-stress by regulating calapin activity and expression in LPS-activated microglia. Additionally, Melatonin or L-165,041 ameliorated the neurobehavioral deficits in LPS-aggravated neuroinflammatory mice through blocking microglia activities, and also promoted phenotype changes to M2-predominant microglia. Melatonin suppressed neuro-inflammation in vitro and in vivo by tuning microglial activation through the ER-stress-dependent PPARδ/SIRT1 signaling cascade. This treatment strategy is an encouraging pharmacological approach for the remedy of neuro-inflammation associated disorders.


Assuntos
Melatonina , PPAR delta , Ratos , Camundongos , Animais , Microglia , PPAR delta/metabolismo , PPAR delta/farmacologia , PPAR delta/uso terapêutico , Melatonina/farmacologia , Lipopolissacarídeos/farmacologia , Sirtuína 1/metabolismo , Simulação de Acoplamento Molecular , Inflamação/metabolismo
4.
J Magn Reson Imaging ; 59(2): 587-598, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37220191

RESUMO

BACKGROUND: The delineation of brain arteriovenous malformations (bAVMs) is crucial for subsequent treatment planning. Manual segmentation is time-consuming and labor-intensive. Applying deep learning to automatically detect and segment bAVM might help to improve clinical practice efficiency. PURPOSE: To develop an approach for detecting bAVM and segmenting its nidus on Time-of-flight magnetic resonance angiography using deep learning methods. STUDY TYPE: Retrospective. SUBJECTS: 221 bAVM patients aged 7-79 underwent radiosurgery from 2003 to 2020. They were split into 177 training, 22 validation, and 22 test data. FIELD STRENGTH/SEQUENCE: 1.5 T, Time-of-flight magnetic resonance angiography based on 3D gradient echo. ASSESSMENT: The YOLOv5 and YOLOv8 algorithms were utilized to detect bAVM lesions and the U-Net and U-Net++ models to segment the nidus from the bounding boxes. The mean average precision, F1, precision, and recall were used to assess the model performance on the bAVM detection. To evaluate the model's performance on nidus segmentation, the Dice coefficient and balanced average Hausdorff distance (rbAHD) were employed. STATISTICAL TESTS: The Student's t-test was used to test the cross-validation results (P < 0.05). The Wilcoxon rank test was applied to compare the median for the reference values and the model inference results (P < 0.05). RESULTS: The detection results demonstrated that the model with pretraining and augmentation performed optimally. The U-Net++ with random dilation mechanism resulted in higher Dice and lower rbAHD, compared to that without that mechanism, across varying dilated bounding box conditions (P < 0.05). When combining detection and segmentation, the Dice and rbAHD were statistically different from the references calculated using the detected bounding boxes (P < 0.05). For the detected lesions in the test dataset, it showed the highest Dice of 0.82 and the lowest rbAHD of 5.3%. DATA CONCLUSION: This study showed that pretraining and data augmentation improved YOLO detection performance. Properly limiting lesion ranges allows for adequate bAVM segmentation. LEVEL OF EVIDENCE: 4 TECHNICAL EFFICACY STAGE: 1.


Assuntos
Aprendizado Profundo , Malformações Arteriovenosas Intracranianas , Humanos , Encéfalo/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Malformações Arteriovenosas Intracranianas/diagnóstico por imagem , Malformações Arteriovenosas Intracranianas/cirurgia , Angiografia por Ressonância Magnética , Imageamento por Ressonância Magnética , Estudos Retrospectivos , Criança , Adolescente , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Idoso
5.
Radiother Oncol ; 190: 110007, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37967585

RESUMO

BACKGROUND: Manual detection of brain metastases is both laborious and inconsistent, driving the need for more efficient solutions. Accordingly, our systematic review and meta-analysis assessed the efficacy of deep learning algorithms in detecting and segmenting brain metastases from various primary origins in MRI images. METHODS: We conducted a comprehensive search of PubMed, Embase, and Web of Science up to May 24, 2023, which yielded 42 relevant studies for our analysis. We assessed the quality of these studies using the QUADAS-2 and CLAIM tools. Using a random-effect model, we calculated the pooled lesion-wise dice score as well as patient-wise and lesion-wise sensitivity. We performed subgroup analyses to investigate the influence of factors such as publication year, study design, training center of the model, validation methods, slice thickness, model input dimensions, MRI sequences fed to the model, and the specific deep learning algorithms employed. Additionally, meta-regression analyses were carried out considering the number of patients in the studies, count of MRI manufacturers, count of MRI models, training sample size, and lesion number. RESULTS: Our analysis highlighted that deep learning models, particularly the U-Net and its variants, demonstrated superior segmentation accuracy. Enhanced detection sensitivity was observed with an increased diversity in MRI hardware, both in terms of manufacturer and model variety. Furthermore, slice thickness was identified as a significant factor influencing lesion-wise detection sensitivity. Overall, the pooled results indicated a lesion-wise dice score of 79%, with patient-wise and lesion-wise sensitivities at 86% and 87%, respectively. CONCLUSIONS: The study underscores the potential of deep learning in improving brain metastasis diagnostics and treatment planning. Still, more extensive cohorts and larger meta-analysis are needed for more practical and generalizable algorithms. Future research should prioritize these areas to advance the field. This study was funded by the Gen. & Mrs. M.C. Peng Fellowship and registered under PROSPERO (CRD42023427776).


Assuntos
Neoplasias Encefálicas , Aprendizado Profundo , Humanos , Algoritmos , Imageamento por Ressonância Magnética/métodos , Neoplasias Encefálicas/diagnóstico por imagem
6.
Int J Mol Sci ; 24(16)2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-37628850

RESUMO

Microglial cells are a macrophage-like cell type residing within the CNS. These cells evoke pro-inflammatory responses following thrombin-induced brain damage. Inflammasomes, which are large caspase-1-activating protein complexes, play a critical role in mediating the extracellular release of HMGB1 in activated immune cells. The exact role of inflammasomes in microglia activated by thrombin remains unclear, particularly as it relates to the downstream functions of HMGB1. After receiving microinjections of thrombin, Sprague Dawley rats of 200 to 250 gm were studied in terms of behaviors and immunohistochemical staining. Primary culture of microglia cells and BV-2 cells were used for the assessment of signal pathways. In a water maze test and novel object recognition analysis, microinjections of thrombin impaired rats' short-term and long-term memory, and such detrimental effects were alleviated by injecting anti-HMGB-1 antibodies. After thrombin microinjections, the increased oxidative stress of neurons was aggravated by HMGB1 injections but attenuated by anti-HMGB-1 antibodies. Such responses occurred in parallel with the volume of activated microglia cells, as well as their expressions of HMGB-1, IL-1ß, IL-18, and caspase-I. In primary microglia cells and BV-2 cell lines, thrombin also induced NO release and mRNA expressions of iNOS, IL-1ß, IL-18, and activated caspase-I. HMGB-1 aggravated these responses, which were abolished by anti-HMGB-1 antibodies. In conclusion, thrombin induced microglia activation through triggering inflammasomes to release HMGB1, contributing to neuronal death. Such an action was counteracted by the anti-HMGB-1 antibodies. The refinement of HMGB-1 modulated the neuro-inflammatory response, which was attenuated in thrombin-associated neurodegenerative disorder.


Assuntos
Proteína HMGB1 , Microglia , Animais , Ratos , Ratos Sprague-Dawley , Inflamassomos , Interleucina-18 , Trombina/farmacologia , Macrófagos , Caspases
7.
J Magn Reson Imaging ; 2023 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-37572087

RESUMO

BACKGROUND: Deep learning-based segmentation algorithms usually required large or multi-institute data sets to improve the performance and ability of generalization. However, protecting patient privacy is a key concern in the multi-institutional studies when conventional centralized learning (CL) is used. PURPOSE: To explores the feasibility of a proposed lesion delineation for stereotactic radiosurgery (SRS) scheme for federated learning (FL), which can solve decentralization and privacy protection concerns. STUDY TYPE: Retrospective. SUBJECTS: 506 and 118 vestibular schwannoma patients aged 15-88 and 22-85 from two institutes, respectively; 1069 and 256 meningioma patients aged 12-91 and 23-85, respectively; 574 and 705 brain metastasis patients aged 26-92 and 28-89, respectively. FIELD STRENGTH/SEQUENCE: 1.5T, spin-echo, and gradient-echo [Correction added after first online publication on 21 August 2023. Field Strength has been changed to "1.5T" from "5T" in this sentence.]. ASSESSMENT: The proposed lesion delineation method was integrated into an FL framework, and CL models were established as the baseline. The effect of image standardization strategies was also explored. The dice coefficient was used to evaluate the segmentation between the predicted delineation and the ground truth, which was manual delineated by neurosurgeons and a neuroradiologist. STATISTICAL TESTS: The paired t-test was applied to compare the mean for the evaluated dice scores (p < 0.05). RESULTS: FL performed the comparable mean dice coefficient to CL for the testing set of Taipei Veterans General Hospital regardless of standardization and parameter; for the Taichung Veterans General Hospital data, CL significantly (p < 0.05) outperformed FL while using bi-parameter, but comparable results while using single-parameter. For the non-SRS data, FL achieved the comparable applicability to CL with mean dice 0.78 versus 0.78 (without standardization), and outperformed to the baseline models of two institutes. DATA CONCLUSION: The proposed lesion delineation successfully implemented into an FL framework. The FL models were applicable on SRS data of each participating institute, and the FL exhibited comparable mean dice coefficient to CL on non-SRS dataset. Standardization strategies would be recommended when FL is used. LEVEL OF EVIDENCE: 4 TECHNICAL EFFICACY: Stage 1.

8.
J Biol Chem ; 299(9): 105149, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37567477

RESUMO

Alanyl-tRNA synthetase retains a conserved prototype structure throughout its biology. Nevertheless, its C-terminal domain (C-Ala) is highly diverged and has been shown to play a role in either tRNA or DNA binding. Interestingly, we discovered that Caenorhabditis elegans cytoplasmic C-Ala (Ce-C-Alac) robustly binds both ligands. How Ce-C-Alac targets its cognate tRNA and whether a similar feature is conserved in its mitochondrial counterpart remain elusive. We show that the N- and C-terminal subdomains of Ce-C-Alac are responsible for DNA and tRNA binding, respectively. Ce-C-Alac specifically recognized the conserved invariant base G18 in the D-loop of tRNAAla through a highly conserved lysine residue, K934. Despite bearing little resemblance to other C-Ala domains, C. elegans mitochondrial C-Ala robustly bound both tRNAAla and DNA and maintained targeting specificity for the D-loop of its cognate tRNA. This study uncovers the underlying mechanism of how C. elegans C-Ala specifically targets the D-loop of tRNAAla.


Assuntos
Alanina-tRNA Ligase , Caenorhabditis elegans , Motivos de Nucleotídeos , RNA de Transferência de Alanina , Animais , Alanina-tRNA Ligase/química , Alanina-tRNA Ligase/metabolismo , Caenorhabditis elegans/enzimologia , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Sequência Conservada , Citoplasma/enzimologia , DNA/química , DNA/metabolismo , Ligantes , Lisina/metabolismo , Mitocôndrias/enzimologia , Domínios Proteicos , RNA de Transferência de Alanina/química , RNA de Transferência de Alanina/metabolismo , Especificidade por Substrato , Conformação de Ácido Nucleico
9.
Int J Mol Sci ; 24(14)2023 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-37511175

RESUMO

Thrombin is a multifunctional serine protein which is closely related to neurodegenerative disorders. The Aryl hydrocarbon receptor (AhR) is well expressed in microglia cells involving inflammatory disorders of the brain. However, it remains unclear as to how modulation of AhR expression by thrombin is related to the development of neurodegeneration disorders. In this study, we investigated the role of AhR in the development of thrombin-induced neurodegenerative processes, especially those concerning microglia. The primary culture of either wild type or AhR deleted microglia, as well as BV-2 cell lines, was used for an in vitro study. Hippocampal slice culture and animals with either wild type or with AhR deleted were used for the ex vivo and in vivo studies. Simulations of ligand protein docking showed a strong integration between the thrombin and AhR. In thrombin-triggered microglia cells, deleting AhR escalated both the NO release and iNOS expression. Such effects were abolished by the administration of the AhR agonist. In thrombin-activated microglia cells, downregulating AhR increased the following: vascular permeability, pro-inflammatory genetic expression, MMP-9 activity, and the ratio of M1/M2 phenotype. In the in vivo study, thrombin induced the activation of microglia and their volume, thereby contributing to the deterioration of neurobehavior. Deleting AhR furthermore aggravated the response in terms of impaired neurobehavior, increasing brain edema, aggregating microglia, and increasing neuronal death. In conclusion, thrombin caused the activation of microglia through increased vessel permeability, expression of inflammatory response, and phenotype of M1 microglia, as well the MMP activity. Deleting AhR augmented the above detrimental effects. These findings indicate that the modulation of AhR is essential for the regulation of thrombin-induced brain damages and that the AhR agonist may harbor the potentially therapeutic effect in thrombin-induced neurodegenerative disorder.


Assuntos
Microglia , Receptores de Hidrocarboneto Arílico , Trombina , Animais , Camundongos , Linhagem Celular , Macrófagos/metabolismo , Microglia/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo , Trombina/farmacologia
10.
Sci Rep ; 13(1): 9442, 2023 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-37296207

RESUMO

The combination of re-irradiation and bevacizumab has emerged as a potential therapeutic strategy for patients experiencing their first glioblastoma multiforme (GBM) recurrence. This study aims to assess the effectiveness of the re-irradiation and bevacizumab combination in treating second-progression GBM patients who are resistant to bevacizumab monotherapy. This retrospective study enrolled 64 patients who developed a second progression after single-agent bevacizumab therapy. The patients were divided into two groups: 35 underwent best supportive care (none-ReRT group), and 29 received bevacizumab and re-irradiation (ReRT group). The study measured the overall survival time after bevacizumab failure (OST-BF) and re-irradiation (OST-RT). Statistical tests were used to compare categorical variables, evaluate the difference in recurrence patterns between the two groups, and identify optimal cutoff points for re-irradiation volume. The results of the Kaplan-Meier survival analysis indicated that the re-irradiation (ReRT) group experienced a significantly higher survival rate and longer median survival time than the non-ReRT group. The median OST-BF and OST-RT were 14.5 months and 8.8 months, respectively, for the ReRT group, while the OST-BF for the none-ReRT group was 3.9 months (p < 0.001). The multivariable analysis identified the re-irradiation target volume as a significant factor for OST-RT. Moreover, the re-irradiation target volume exhibited excellent discriminatory ability in the area under the curve (AUC) analysis, with an optimal cutoff point of greater than 27.58 ml. These findings suggest that incorporating re-irradiation with bevacizumab therapy may be a promising treatment strategy for patients with recurrent GBM resistant to bevacizumab monotherapy. The re-irradiation target volume may serve as a valuable selection factor in determining which patients with recurrent GBM are likely to benefit from the combined re-irradiation and bevacizumab treatment modality.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Reirradiação , Humanos , Bevacizumab/uso terapêutico , Glioblastoma/tratamento farmacológico , Glioblastoma/radioterapia , Prognóstico , Estudos Retrospectivos , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/radioterapia , Recidiva Local de Neoplasia
11.
J Neurooncol ; 162(1): 179-189, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36894719

RESUMO

PURPOSE: Microsurgery is the mainstay of treatment for large vestibular schwannomas (VS), but the benefits of radiosurgery remain incompletely defined. Here, we aim to use automated volumetric analysis software to quantify the degree of brain stem deformity to predict long-term outcomes of patients with large VS following GKRS. METHODS: Between 2003 and 2020, 39 patients with large VS (volume > 8 cc) undergoing GKRS with a margin dose of 10-12 Gy were analyzed. The reconstruction 3D MRI was used to evaluate the extent of deformity for predicting the long-term outcome of patients. RESULTS: Their mean tumor volume was 13.7 ± 6.3 cc, and their mean follow-up after GKRS was 86.7 ± 65.3 months. Favorable clinical outcome was observed in 26 (66.7%) patients, while 13 (33.3%) patients had treatment failure. Patients with small tumor volumes, low vital structure deformity indice [(TV/(BSV + CerV) and (TV + EV)/(BSV + CerV)], and long distance of tumor to the central line were more likely to have favorable clinical outcome after GKRS. Significant prognostic value was with tumor shrinkage ratio (< 50%) were CV, CV/TV, TV/CerV, (TV + EV)/(BSV + CerV), and the distance of tumor to the central line. In cox regression, favorable clinical outcome was correlated with the Charlson comorbidity index and cochlear dosage (both p < 0.05). In multivariant analysis, tumor regression was highly correlated with the CV/TV ratio (p < 0.001). CONCLUSIONS: The brainstem deformity ratio is likely a useful index to assess the clinical and tumor regression outcomes. Clinical outcomes are multifactorial and the tumor regression was highly correlated with the ratio of cystic components.


Assuntos
Neuroma Acústico , Radiocirurgia , Humanos , Neuroma Acústico/diagnóstico por imagem , Neuroma Acústico/radioterapia , Neuroma Acústico/cirurgia , Radiocirurgia/efeitos adversos , Resultado do Tratamento , Prognóstico , Falha de Tratamento , Estudos Retrospectivos , Seguimentos
12.
Cell Biol Toxicol ; 39(5): 1873-1896, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-34973135

RESUMO

BACKGROUND AND PURPOSE: Histone deacetylase (HDAC) inhibitors (HDIs) can modulate the epithelial-mesenchymal transition (EMT) progression and inhibit the migration and invasion of cancer cells. Emerging as a novel class of anti-cancer drugs, HDIs are attracted much attention in the field of drug discovery. This study aimed to discern the underlying mechanisms of Honokiol in preventing the metastatic dissemination of gastric cancer cells by inhibiting HDAC3 activity/expression. EXPERIMENTAL APPROACH: Clinical pathological analysis was performed to determine the relationship between HDAC3 and tumor progression. The effects of Honokiol on pharmacological characterization, functional, transcriptional activities, organelle structure changes, and molecular signaling were analyzed using binding assays, differential scanning calorimetry, luciferase reporter assay, HDAC3 activity, ER stress response element activity, transmission electron microscopy, immune-blotting, and Wnt/ß-catenin activity assays. The in vivo effects of Honokiol on peritoneal dissemination were determined by a mouse model and detected by PET/CT tomography. KEY RESULTS: HDAC3 over-expression was correlated with poor prognosis. Honokiol significantly abolished HDAC3 activity (Y298) via inhibition of NFκBp65/CEBPß signaling, which could be reversed by the over-expression of plasmids of NFκBp65/CEBPß. Treatments with 4-phenylbutyric acid (a chemical chaperone) and calpain-2 gene silencing inhibited Honokiol-inhibited NFκBp65/CEBPß activation. Honokiol increased ER stress markers and inhibited EMT-associated epithelial markers, but decreased Wnt/ß-catenin activity. Suppression of HDAC3 by both Honokiol and HDAC3 gene silencing decreased cell migration and invasion in vitro and metastasis in vivo. CONCLUSIONS AND IMPLICATIONS: Honokiol acts by suppressing HDAC3-mediated EMT and metastatic signaling. By prohibiting HDAC3, metastatic dissemination of gastric cancer may be blocked. Conceptual model showing the working hypothesis on the interaction among Honokiol, HDAC3, and ER stress in the peritoneal dissemination of gastric cancer. Honokiol targeting HDAC3 by ER stress cascade and mitigating the peritoneal spread of gastric cancer. Honokiol-induced ER stress-activated calpain activity targeted HDAC3 and blocked Tyr298 phosphorylation, subsequently blocked cooperating with EMT transcription factors and cancer progression. The present study provides evidence to demonstrate that HDAC3 is a positive regulator of EMT and metastatic growth of gastric cancer cells. The findings here imply that overexpressed HDAC3 is a potential therapeutic target for honokiol to reverse EMT and prevent gastric cancer migration, invasion, and metastatic dissemination. • Honokiol significantly abolished HDAC3 activity on catalytic tyrosine 298 residue site. In addition, Honokiol-induced ER stress markedly inhibited HDAC3 expression via inhibition of NFκBp65/CEBPß signaling. • HDAC3, which is a positive regulator of metastatic gastric cancer cell growth, can be significantly inhibited by Honokiol. • Opportunities for HDAC3 inhibition may be a potential therapeutic target for preventing gastric cancer metastatic dissemination.


Assuntos
Neoplasias Gástricas , beta Catenina , Animais , Camundongos , Calpaína/antagonistas & inibidores , Calpaína/genética , Calpaína/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Transição Epitelial-Mesenquimal , Histona Desacetilases/metabolismo , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/metabolismo , Inibidores de Histona Desacetilases
13.
Int J Mol Sci ; 23(21)2022 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-36362294

RESUMO

Glioblastoma multiforme (GBM) is the most common and aggressive primary malignant tumor of the central nervous system. GBM has a very low 5-year survival rate and reaching merely a median of ~15 months even with aggressive treatments. PPARγ (Peroxisome proliferator- activated receptor gamma) agonists (ciglitazone), while being widely used on patients of type 2 diabetes mellitus, also have approved anticancer effects. Their action mechanisms on malignant glioma are not fully understood. The aim of this study is to investigate the potential therapeutic effect of PPARγ agonists on maligant glioma. Glioma cell line and in-vivo/ex-vivo animal model intervened by ciglitazone were used to assess the associated mechanism and therapeutic effect. Our results from in vivo and ex vivo experiments showed that ciglitazone not only inhibited tumor growth and its associated angiogenesis, but it also reduced colony formation and migration of tumors. Ciglitazone inhibited the phosphorylation of STAT3 (signal transducer and activator of transcription 3) (at the point of tyrosine 705 by increasing both the amount and activity of SHP-2 (Src homology region 2-containing protein tyrosine phosphatase 2) proteins, based on evidence obtained from immunoprecipitation and immunohistochemistry. Furthermore, ciglitazone activated proteasomes and lysosomes to degrade cell-cycle-related proteins like Cyclin D1, Cyclin E, CDK2 (Cyclin-dependent kinase 2), and CDK4 (Cyclin-dependent kinase 4). Ciglitazone triggered expressions of LC3 (Microtubule-associated protein 1A/1B-light chain 3) and formation of acidic vesicular organelles (AVOs), both of which were implicated in the autophagy pathway. In conclusion, ciglitazone showed the multiple actions to regulate the growth of glioma, which appeared to be a potential candidate for treating malignant glioma.


Assuntos
Diabetes Mellitus Tipo 2 , Glioblastoma , Glioma , Tiazolidinedionas , Animais , PPAR gama/metabolismo , Tiazolidinedionas/farmacologia , Tiazolidinedionas/uso terapêutico , Glioma/metabolismo , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Proteínas de Ciclo Celular/metabolismo , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Proteínas Associadas aos Microtúbulos , Linhagem Celular Tumoral
14.
Int J Mol Sci ; 23(19)2022 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-36232555

RESUMO

Neuropathic pain is well known to occur after damage to the somatosensory system. Aryl hydrocarbon receptor (AhR) has neuroprotective effects when the central nervous system is subjected to internal and external stimulations. However, the exact mechanism by which AhR regulates neuropathic pain is poorly understood. Nerve explant culture and the chronic constrictive nerve injury (CCI) model in wild or AhR-knockout mice were used in this study. In the nerve explant culture, the ovoid number increased in the AhR-/- condition and was decreased by omeprazole (AhR agonist) in a dose-dependent manner. Increased nerve degeneration and the associated inflammation response appeared in the AhR-/- condition, and these changes were attenuated by omeprazole. High expression of AhR in the injured nerve was noted after CCI. Deletion of AhR aggravated nerve damages and this was restored by omeprazole. Deletion of AhR increased NGF expression and reduced axon number in the paw skin, but this was attenuated by omeprazole. A highly expressed inflammation reaction over the dorsal spinal cord, somatosensory cortex, and hippocampus was noted in the AhR-deleted animals. Administration of omeprazole attenuated not only the inflammatory response, but also the amplitude of somatosensory evoked potential. Deletion of AhR further aggravated the neurobehavior compared with the wild type, but such behavior was attenuated by omeprazole. Chronic constrictive nerve injury augmented AhR expression of the injured nerve, and AhR deletion worsened the damage, while AhR agonist omeprazole counteracted such changes. AhR agonists could be potential candidates for neuropathic pain treatment.


Assuntos
Lesões por Esmagamento , Neuralgia , Fármacos Neuroprotetores , Traumatismos do Sistema Nervoso , Animais , Constrição , Constrição Patológica , Modelos Animais de Doenças , Hiperalgesia/metabolismo , Inflamação/genética , Camundongos , Camundongos Knockout , Fator de Crescimento Neural , Neuralgia/etiologia , Neuralgia/genética , Omeprazol , Receptores de Hidrocarboneto Arílico/genética , Receptores de Hidrocarboneto Arílico/metabolismo , Nervo Isquiático/metabolismo
15.
Eur J Med Res ; 27(1): 223, 2022 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-36309708

RESUMO

PURPOSE: Gamma knife radiosurgery (GK) is a commonly used approach for the treatment of intracranial lesions. Its radiation response is typically not immediate, but delayed. In this study, we analyzed cases from a prospectively collected database to assess the influence of COVID-19 pandemic on the decision making in patients treated by gamma knife radiosurgery. METHODS: From January 2019 to August 2021, 540 cases of intracranial lesions were treated by GK with 207 cases before COVID-19 pandemic as a control. During the COVID-19 pandemic, 333 cases were similarly treated on patients with or without the COVID-19 vaccination. All the GK treated parameters as well as time profile in the decision making were analyzed. The parameters included age, sex, characteristic of lesion, targeted volume, peripheral radiation dose, neurological status, Karnofsky Performance Status (KPS), time interval from MRI diagnosis to consultation, time interval from the approval to treatment, frequency of outpatient department (OPD) visit, and frequency of imaging follow-up. RESULTS: Longer time intervals from diagnosis to GK consultation and treatment were found in the pandemic group (36.8 ± 25.5/54.5 ± 27.6 days) compared with the pre-COVID control (17.1 ± 22.4/45.0 ± 28.0 days) or vaccination group (12.2 ± 7.1/29.6 ± 10.9 days) (p < 0.001, and p < 0.001, respectively). The fewer OPD visits and MRI examinations also showed the same trends. High proportion of neurological deficits were found in the pandemic group (65.4%) compared with the control (45.4%) or vaccination group (58.1%) (p < 0.001). The Charlson comorbidity in the pandemic group was 3.9 ± 3.3, the control group was 4.6 ± 3.2, and the vaccination group was 3.1 ± 3.1. There were similar inter-group difference (p < 0.001). In multiple variant analyses, longer time intervals from the diagnosis to consultation or treatment, OPD frequency and MRI examination were likely influenced by the status of the COVID-19 pandemic as they were alleviated by the vaccination. CONCLUSIONS: The decision making in patients requiring gamma knife treatment was most likely influenced by the status of the COVID-19 pandemic, while vaccination appeared to attenuate their hesitant behaviors. Patients with pre-treatment neurological deficits and high co-morbidity undergoing the gamma knife treatment were less affected by the COVID-19 pandemic.


Assuntos
Neoplasias Encefálicas , COVID-19 , Radiocirurgia , Humanos , Radiocirurgia/efeitos adversos , Radiocirurgia/métodos , COVID-19/epidemiologia , Pandemias , Vacinas contra COVID-19 , Estudos Retrospectivos , Tomada de Decisões , Seguimentos , Resultado do Tratamento
16.
Life (Basel) ; 12(8)2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-36013354

RESUMO

Objective: The leading treatment option for dural carotid−cavernous sinus fistula is an endovascular approach with immediate improvement. Alternatively, radiosurgery is a slow response for obliterating the fistula and poses a radiation risk to the optic apparatus and the associated cranial nerves and blood vessels. In this study, we retrieved cases from a prospective database to assess the ophthalmological outcomes and complications in treating dural carotid cavernous sinus fistula with gamma knife radiosurgery (GKRS). Material and Methods: We retrieved a total of 65 cases of carotid cavernous sinus fistula treated with GKRS with margin dose of 18−20 Gy from 2003 to 2018 and reviewed the ophthalmological records required for our assessment. Results: The mean target volume was 2 ± 1.43 cc. The onset of symptom alleviated after GKRS was 3.71 ± 7.68 months. There were two cases with residual chemosis, two with cataract, two with infarction, one with transient optic neuropathy, and four with residual cranial nerve palsy, but none with glaucoma or dry eyes. In MRA analysis, total obliteration of the fistula was noted in 64 cases with no detectable ICA stenosis nor cavernous sinus thrombosis. In the Cox regression analysis, post-GKRS residual cranial nerve palsy was highly correlated to targeted volume (p < 0.05) and age (p < 0.05). The occurrence of post-GKRS cataract was related to the initial symptom of chemosis (p < 0.05). Conclusion: GKRS for carotid cavernous sinus fistula offers a high obliteration rate and preserves the cavernous sinus vascular structure while conferring a low risk of treatment complications such as adverse radiation risk to the optic apparatus and adjacent cranial nerves.

17.
Br J Pharmacol ; 179(13): 3430-3451, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35083738

RESUMO

BACKGROUND AND PURPOSE: Idiopathic pulmonary fibrosis is a devastating disease with multiple contributing factors. Insulin-like growth factor 1 receptor (IGF1R), with a reciprocal function to aryl hydrocarbon receptor (AhR), is involved in airway inflammation. The exact relationship between IGF1R and AhR in lung fibrogenesis is unclear. This study aimed to investigate the cascade pathway involving IGF1R and AhR in idiopathic pulmonary fibrosis. EXPERIMENTAL APPROACH: The AhR and IGF1R expressions were determined in the lungs of idiopathic pulmonary fibrosis patients and in a rodent fibrosis model. Pulmonary fibrosis was evaluated in bleomycin (BLM)-induced lung injury in wild type and AhR knockout (Ahr-/- ) mice. The effects of IGF1R inhibition and AhR activation in vitro on TGF-ß1-induced epithelial-mesenchymal transition (EMT) in Beas2B cells and in vivo on BLM-exposed mice were also examined. KEY RESULTS: There were increased IGF1R levels but AhR expression decreased in the lung of idiopathic pulmonary fibrosis patients and BLM-induced mice. Knockout of AhR aggravated lung fibrosis, while the use of IGF1R inhibitor and AhR agonist significantly attenuated such effects and inhibited TGF-ß1-induced epithelial-mesenchymal transition in Beas2B cells. Both TGF-ß1 and BLM markedly suppressed AhR expression through endoplasmic reticulum stress and consequently, IGF1R activation. The IGF1R inhibitor and specific knockdown of IGF1R reversed the activation of the TGF-ß1 signal pathway. CONCLUSION AND IMPLICATIONS: In the development of idiopathic pulmonary fibrosis, AhR and IGF1R play opposite roles via the TGF-ß/Smad/STAT signalling cascade. The AhR/IGF1R axis is a potential target for the treatment of lung injury and fibrosis.


Assuntos
Fibrose Pulmonar Idiopática , Lesão Pulmonar , Receptor IGF Tipo 1 , Receptores de Hidrocarboneto Arílico , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Bleomicina , Humanos , Fator de Crescimento Insulin-Like I/metabolismo , Pulmão , Lesão Pulmonar/metabolismo , Camundongos , Camundongos Knockout , Receptor IGF Tipo 1/genética , Receptor IGF Tipo 1/metabolismo , Receptores de Hidrocarboneto Arílico/genética , Receptores de Hidrocarboneto Arílico/metabolismo , Fator de Crescimento Transformador beta1/farmacologia
18.
Radiat Oncol ; 16(1): 164, 2021 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-34454542

RESUMO

BACKGROUND: The benefit and the risk profile of Gamma Knife radiosurgery (GKRS) for intracerebral cavernoma remains incompletely defined in part due to the natural history of low incidence of bleeding and spontaneous regression of this vascular malformation. In this study, we retrieved cases from a prospectively collected database to assess the outcome of intracerebral cavernoma treated with GKRS using a double blinded review process for treatment. METHODS: From 2003 to 2018, there were 94 cases of cavernoma treated by GKRS in the doubly blinded assessments by two experienced neurological and approved for GKRS treatment. All the patients received GKRS with margin dose of 11-12 (Gray) Gy and afterwards were assessed for neurological outcome, radiologic response, and quality of life. RESULTS: The median age of the patients was 48 (15-85) years with median follow up of 77 (26-180) months post SRS. The mean target volume was 1.93 ± 3.45 cc. In those who has pre-SRS epilepsy, 7 of 16 (43.7%) achieved seizure freedom (Engel I/II) and 9 of 16 (56.3%) achieved decreased seizures (Engel III) after SRS. Rebleeding occurred in 2 cases (2.1%) at 13 and 52 months post SRS. The radiologic assessment demonstrated 20 (21.3%) cases of decreased cavernoma volume, 69 (73.4%) were stable, and 5 (7.3%) increased size. Eighty-seven of 94 (92.5%) cases at the last follow up achieve improvement in their quality of life, but 7 cases (7.4%) showed a deterioration. In statistical analysis, the effective seizure control class (Engel I/II) was highly correlated with patient harboring a single lesion (p < 0.05) and deep seated location of the cavernoma (p < 0.01). New neurological deficits were highly correlated with decreased mental (p < 0.001) and physical (p < 0.05) components of quality of life testing, KPS (p < 0.001), deep seated location (p < 0.01), and increased nidus volume (p < 0.05). Quality of life deterioration either in physical component (p < 0.01), mental component (p < 0.01), and KPS (p < 0.05) was highly correlated with increased cavernoma volume. CONCLUSION: Low margin dose GKRS for intracerebral cavernoma offers reasonable seizure control and improved quality of life while conferring a low risk of treatment complications including adverse radiation effect.


Assuntos
Neoplasias Encefálicas/radioterapia , Hemangioma Cavernoso do Sistema Nervoso Central/radioterapia , Radiocirurgia/métodos , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/psicologia , Método Duplo-Cego , Feminino , Hemangioma Cavernoso do Sistema Nervoso Central/diagnóstico por imagem , Hemangioma Cavernoso do Sistema Nervoso Central/psicologia , Humanos , Masculino , Pessoa de Meia-Idade , Qualidade de Vida , Radiocirurgia/efeitos adversos , Dosagem Radioterapêutica , Adulto Jovem
19.
Neurosurgery ; 89(1): E49-E59, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-33862620

RESUMO

BACKGROUND: Peripheral nerve injuries result in muscle denervation and apoptosis of the involved muscle, which subsequently reduces mitochondrial content and causes muscle atrophy. The local injection of mitochondria has been suggested as a useful tool for restoring the function of injured nerves or the brain. OBJECTIVE: To determine outcomes following the administration of isolated mitochondria into denervated muscle after nerve injury that have not been investigated. METHODS: Muscle denervation was conducted in a sciatic nerve crushed by a vessel clamp and the denervated gastrocnemius muscle was subjected to 195 µg hamster green fluorescent protein (GFP)-mitochondria intramuscular infusion for 10 min. RESULTS: The mitochondria were homogeneously distributed throughout the denervated muscle after intramuscular infusion. The increases in caspase 3, 8-oxo-dG, Bad, Bax, and ratio of Bax/Bcl-2 levels in the denervated muscle were attenuated by mitochondrial infusion, and the downregulation of Bcl-2 expression was prevented by mitochondrial infusion. In addition, the decrease in the expression of desmin and the acetylcholine receptor was counteracted by mitochondrial infusion; this effect paralleled the amount of distributed mitochondria. The restoration of the morphology of injured muscles and nerves was augmented by the local infusion of mitochondria. Mitochondrial infusion also led to improvements in sciatic functional indexes, compound muscle action potential amplitudes, and conduction latencies as well as the parameters of CatWalk (Noldus) gait analysis. CONCLUSION: The local infusion of mitochondria can successfully prevent denervated muscle atrophy and augment nerve regeneration by reducing oxidative stress in denervated muscle.


Assuntos
Lesões por Esmagamento , Mitocôndrias , Lesões por Esmagamento/metabolismo , Humanos , Denervação Muscular , Músculo Esquelético , Compressão Nervosa , Regeneração Nervosa , Traumatismos dos Nervos Periféricos/tratamento farmacológico , Traumatismos dos Nervos Periféricos/metabolismo , Nervo Isquiático/metabolismo
20.
J Int Med Res ; 49(1): 300060520986685, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33472475

RESUMO

OBJECTIVE: Pediatric lumbar disc herniation (LDH), although uncommon, causes significant pain, discomfort, and sometimes disability. We examined the efficacy of percutaneous endoscopic lumbar discectomy (PELD) for pediatric LDH and the degree of lumbar disc degeneration at 1 year after PELD. METHODS: We retrospectively reviewed the data of pediatric patients with LDH who underwent PELD from December 2007 to July 2018. The patients' symptoms, physical examination findings, clinical images, visual analog scale (VAS) scores, Oswestry Disability Index (ODI), and perioperative results (blood loss, length of hospital stay, and complications) were obtained from the medical records. Lumbar disc degeneration was graded using the modified Pfirrmann grading system at the 1-year postoperative magnetic resonance imaging (MRI) examination. RESULTS: Six boys and four girls who underwent PELD were evaluated. The patients' mean age was 15.6 years (range, 13-17 years). The mean VAS score for low back pain, mean VAS score for lower limb pain, and mean ODI preoperatively and 1 year postoperatively were 6.2 and 0.3, 6.9 and 0.5, and 20 and 0.1, respectively. MRI showed significant disc degeneration after PELD. CONCLUSIONS: Treating pediatric LDH with PELD is safe and effective. It relieves pain and reduces disability. However, lumbar disc degeneration still occurs.


Assuntos
Discotomia Percutânea , Degeneração do Disco Intervertebral , Deslocamento do Disco Intervertebral , Adolescente , Criança , Discotomia , Endoscopia , Feminino , Humanos , Degeneração do Disco Intervertebral/diagnóstico por imagem , Degeneração do Disco Intervertebral/cirurgia , Deslocamento do Disco Intervertebral/diagnóstico por imagem , Deslocamento do Disco Intervertebral/cirurgia , Vértebras Lombares/diagnóstico por imagem , Vértebras Lombares/cirurgia , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética , Masculino , Estudos Retrospectivos , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...