Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Res ; 252(Pt 3): 119043, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38692422

RESUMO

It is of great significance to establish an effective method for removing Cr(VI) from wastewater. Herein, Fe-doped g-C3N4 (namely Fe-g-C3N4-2) was synthesized and then employed as photocatalyst to conduct the test of Cr(VI) reduction. Notably, the embedding of Fe ion in g-C3N4 can offer the Fe2+/Fe3+ redox couples, so reducing the interfacial resistance of charge transfer and suppressing the recombination of photogenerated electrons and holes. The impurity energy levels will form in g-C3N4 after the introduction of Fe ion, thereby boosting the light absorption capacity of catalyst. Thus, Fe-g-C3N4-2 showed good performance in photocatalytic Cr(VI) reduction, and the reduction efficiency of Cr(VI) can reach 39.9% within 40 min. Different with many previous studies, current work unexpectedly found that the addition of p-benzoquinone (BQ) can promote the Cr(VI) reduction, and the reduction efficiency of Cr(VI) over Fe-g-C3N4-2 was as high as 93.2% in the presence of BQ (1.5 mM). Further analyses showed that BQ can be reduced to hydroquinone (HQ) by photogenerated electrons, and UV light can also directly induce BQ to generate HQ by using H2O as the hydrogen donor. The HQ with reducing ability can accelerate the Cr(VI) reduction. In short, current work shared some novel insights into photocatalytic Cr(VI) reduction in the presence of BQ. Future research should consider possible reactions between photogenerated electrons and BQ. For the UV-induced photocatalysis, the suitability of BQ as the scavenger of O2•‒ must be given carefully consideration.


Assuntos
Benzoquinonas , Cromo , Ferro , Oxirredução , Benzoquinonas/química , Cromo/química , Catálise , Ferro/química , Poluentes Químicos da Água/química , Poluentes Químicos da Água/efeitos da radiação , Processos Fotoquímicos , Compostos de Nitrogênio/química , Compostos de Nitrogênio/efeitos da radiação , Grafite
2.
J Inflamm Res ; 17: 2459-2478, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38681070

RESUMO

Introduction: Sepsis is a worldwide epidemic, with high morbidity and mortality. Cuproptosis is a form of cell death that is associated with a wide range of diseases. This study aimed to explore genes associated with cuproptosis in sepsis, construct predictive models and screen for potential targets. Methods: The LASSO algorithm and SVM-RFE model has been analysed the expression of cuproptosis-related genes in sepsis and immune infiltration characteristics and identified the marker genes under a diagnostic model. Gene-drug networks, mRNA-miRNA networks and PPI networks were constructed to screen for potential biological targets. The expression of marker genes was validated based on the GSE57065 dataset. Consensus clustering method was used to classify sepsis samples. Results: We found 381 genes associated with the development of sepsis and discovered significantly differentially expressed cuproptosis-related genes of 16 cell types in sepsis and immune infiltration with CD8/CD4 T cells being lower. NFE2L2, NLRP3, SLC31A1, DLD, DLAT, PDHB, MTF1, CDKN2A and DLST were identified as marker genes by the LASSO algorithm and the SVM-RFE model. AUC > 0.9 was constructed for PDHB and MTF1 alone respectively. The validation group data for PDHB (P=0.00099) and MTF1 (P=7.2e-14) were statistically significant. Consistent clustering analysis confirmed two subtypes. The C1 subtype may be more relevant to cellular metabolism and the C2 subtype has some relevance to immune molecules.The results of animal experiments showed that the gene expression was consistent with the bioinformatics analysis. Discussion: Our study systematically explored the relationship between sepsis and cuproptosis and constructed a diagnostic model. And, several cuproptosis-related genes may interfere with the progression of sepsis through immune cell infiltration.

3.
J Hazard Mater ; 445: 130618, 2023 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-37056021

RESUMO

It is of great significance to regulate rationally the activation mechanism of persulfate for promoting the development of sulfate radical-based advanced oxidation processes in wastewater treatment. Herein, carbon coated porous Co3O4 with hollow structure was synthesized. Notably, the formation of porous hollow structure improved specific surface area of Co3O4 and offered more redox couples of Co2+/Co3+, thereby reducing electron transfer resistance. Thus, the generation of reactive oxygen species and the role of high-valent transition metal complexes (namely Co3O4Co4+) were improved. The formation of carbon layer on the Co3O4 surface can avoid the release of Co ion during reaction process. Benefiting from the role of carbon layer in electron transport, catalyst-mediated the direct electron transfer from pollutant to PMS was boosted. Radical and nonradical pathways worked in coordination each other and realized the rapid removal of various organic pollutants in the presence of a little PMS. In short, current work revealed that modulating rationally the microstructure of catalyst was an efficient strategy for achieving controllable regulation of PMS activation process. More significantly, whether the direct electron transfer process can occur or not depended on both catalyst structure and electronic density of pollutants.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...