Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ann Plast Surg ; 92(5): 585-590, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38685498

RESUMO

BACKGROUND: Acellular nerve allografts (ANAs) were developed to replace the autologous nerve grafts (ANGs) to fill the peripheral nerve defects. Poor vascularization relative to ANGs has been a limitation of application of ANAs. METHODS: A total of 60 female Sprague-Dawley rats were assigned 3 groups. The rats in A group received ANGs, the rats in B group received ANAs, and the rats in C group were transplanted with ANA carrying endothelial cells (ANA + ECs). In the 1st, 2nd, 4th, and 12th postoperative weeks, 5 rats were selected from each group for evaluating sciatic function index (SFI), electrophysiology, maximum tetanic force recovery rate, tibialis anterior muscle weights recovery rate, and microvessel density. In the 12th postoperative week, the nerves were harvested and stained with toluidine blue and observed under an electron microscope to compare nerve fibers, myelin width, and G-ratio. RESULTS: All the rats survived. In the first and second postoperative weeks, more microvessels were found in the ANA + EC group. In the 12th postoperative week, the nerve fibers were more numerous, and G-ratio was smaller in the C group compared with the B group. The compound muscle action potential and maximum tetanic force recovery rate in the tibialis anterior muscle in the C group were better than those in the B group in the 12th postoperative week. The A group showed better performances in electrophysiology, maximum tetanic force, muscle wet weight, and nerve regeneration. CONCLUSION: ANA + ECs can promote early angiogenesis, promoting nerve regeneration and neurological function recovery.


Assuntos
Aloenxertos , Células Endoteliais , Regeneração Nervosa , Ratos Sprague-Dawley , Nervo Isquiático , Animais , Feminino , Ratos , Nervo Isquiático/cirurgia , Nervo Isquiático/lesões , Nervo Isquiático/transplante , Regeneração Nervosa/fisiologia , Traumatismos dos Nervos Periféricos/cirurgia , Recuperação de Função Fisiológica , Distribuição Aleatória
2.
J Adv Res ; 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38554999

RESUMO

INTRODUCTION: Osteoarthritis (OA) is a progressive disease that poses a significant threat to human health, particularly in aging individuals: Although sympathetic activation has been implicated in bone metabolism, its role in the development of OA related to aging remains poorly understood. Therefore, this study aimed to investigate how sympathetic regulation impacts aging-related OA through experiments conducted both in vivo and in vitro. METHODS: To analyze the effect of sympathetic regulation on aging-related OA, we conducted experiments using various mouse models. These models included a natural aging model, a medial meniscus instability model, and a load-induced model, which were used to examine the involvement of sympathetic nerves. In order to evaluate the expression levels of ß1-adrenergic receptor (Adrß1) and sirtuin-6 (Sirt6) in chondrocytes of naturally aging OA mouse models, we performed assessments. Additionally, we investigated the influence of ß1-adrenergic receptor knockout or treatment with a ß1-adrenergic receptor blocker on the progression of OA in aging mice and detected exosome release and detected downstream signaling expression by inhibiting exosome release. Furthermore, we explored the impact of sympathetic depletion through tyrosine hydroxylase (TH) on OA progression in aging mice. Moreover, we studied the effects of norepinephrine(NE)-induced activation of the ß1-adrenergic receptor signaling pathway on the release of exosomes and miR-125 from chondrocytes, subsequently affecting osteoblast differentiation in subchondral bone. RESULTS: Our findings demonstrated a significant increase in sympathetic activity, such as NE levels, in various mouse models of OA including natural aging, medial meniscus instability, and load-induced models. Notably, we observed alterations in the expression levels of ß1-adrenergic receptor and Sirt6 in chondrocytes in OA mouse models associated with natural aging, leading to an improvement in the progression of OA. Critically, we found that the knockout of ß1-adrenergic receptor or treatment with a ß1-adrenergic receptor blocker attenuated OA progression in aging mice and the degraded cartilage explants produced more exosome than the nondegraded ones, Moreover, sympathetic depletion through TH was shown to ameliorate OA progression in aging mice. Additionally, we discovered that NE-induced activation of the ß1-adrenergic receptor signaling pathway facilitated the release of exosomes and miR-125 from chondrocytes, promoting osteoblast differentiation in subchondral bone. CONCLUSION: In conclusion, our study highlights the role of sympathetic innervation in facilitating the transfer of exosomal miR-125 from osteoarthritic chondrocytes, ultimately disrupting subchondral bone homeostasis and exacerbating cartilage damage in aging mice. These findings provide valuable insights into the potential contribution of sympathetic regulation to the pathogenesis of aging-related OA.

3.
Sheng Wu Gong Cheng Xue Bao ; 39(4): 1525-1547, 2023 Apr 25.
Artigo em Chinês | MEDLINE | ID: mdl-37154321

RESUMO

Cell cycle plays a crucial role in cell development. Cell cycle progression is mainly regulated by cyclin dependent kinase (CDK), cyclin and endogenous CDK inhibitor (CKI). Among these, CDK is the main cell cycle regulator, binding to cyclin to form the cyclin-CDK complex, which phosphorylates hundreds of substrates and regulates interphase and mitotic progression. Abnormal activity of various cell cycle proteins can cause uncontrolled proliferation of cancer cells, which leads to cancer development. Therefore, understanding the changes in CDK activity, cyclin-CDK assembly and the role of CDK inhibitors will help to understand the underlying regulatory processes in cell cycle progression, as well as provide a basis for the treatment of cancer and disease and the development of CDK inhibitor-based therapeutic agents. This review focuses on the key events of CDK activation or inactivation, and summarizes the regulatory processes of cyclin-CDK at specific times and locations, as well as the progress of research on relevant CDK inhibitor therapeutics in cancer and disease. The review concludes with a brief description of the current challenges of the cell cycle process, with the aim to provide scientific references and new ideas for further research on cell cycle process.


Assuntos
Quinases Ciclina-Dependentes , Ciclinas , Quinases Ciclina-Dependentes/metabolismo , Ciclinas/genética , Ciclinas/metabolismo , Proteínas Serina-Treonina Quinases , Proteínas de Ciclo Celular/metabolismo , Ciclo Celular/fisiologia , Quinase 2 Dependente de Ciclina
4.
Colloids Surf B Biointerfaces ; 226: 113292, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37028231

RESUMO

Protein based photocrosslinking hydrogels with nanofiber dispersions were reported to be an effective wound dressing. In this study, two kinds of protein (gelatin and decellularized dermal matrix) were modified to obtain GelMA and ddECMMA, respectively. Poly(ε-caprolactone) nanofiber dispersions (PCLPBA) and thioglycolic acid-modified chitosan (TCS) were added into GelMA solution and ddECMMA solution, respectively. After photocrosslinking, four kinds of hydrogel (GelMA, GTP4, DP and DTP4) were fabricated. The hydrogels showed excellent physico-chemical property, biocompatibility and negligible cytotoxicity. When applied on the full-thickness cutaneous deficiency of SD rats, hydrogel treated groups exhibited an enhanced wound healing effect than Blank group. Besides, the histological staining of H&E and Masson's showed that hydrogels groups with PCLPBA and TCS (GTP4 and DTP4) improved wound healing. Furthermore, GTP4 group performed better healing effect than other groups, which had great potential in skin wound regeneration.


Assuntos
Hidrogéis , Nanofibras , Ratos , Animais , Hidrogéis/química , Nanofibras/química , Ratos Sprague-Dawley , Cicatrização , Pele , Gelatina/química
5.
Regen Biomater ; 10: rbad019, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36969314

RESUMO

Massive hemorrhage may be detrimental to the patients, which necessitates the advent of new materials with high hemostatic efficiency and good biocompatibility. The objective of this research was to screen for the effect of the different types of bio-elastomers as hemostatic dressings. 3D loose nanofiber sponges were prepared; PU-TA/Gel showed promising potential. Polyurethane (PU) was synthesized and electrospun to afford porous sponges, which were crosslinked with glutaraldehyde (GA). FTIR and 1H-NMR evidenced the successful synthesis of PU. The prepared PU-TA/Gel sponge had the highest porosity and water absorption ratio. Besides, PU-TA/Gel sponges exhibited cytocompatibility, negligible hemolysis and the shortest clotting time. PU-TA/Gel sponge rapidly induced stable blood clots with shorter hemostasis time and less bleeding volume in a liver injury model in rats. Intriguingly, PU-TA/Gel sponges also induced good skin regeneration in a full-thickness excisional defect model as revealed by the histological analysis. These results showed that the PU-TA/Gel-based sponges may offer an alternative platform for hemostasis and wound healing.

6.
Open Med (Wars) ; 17(1): 1550-1558, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36245703

RESUMO

Autoimmune liver diseases (AILDs) are life-threatening chronic liver diseases, mainly including autoimmune hepatitis (AIH), primary biliary cholangitis (PBC), and AIH-PBC overlap syndrome (OS), which are difficult to distinguish clinically at early stages. This study aimed to establish model to achieve the purpose of the diagnosis of AIH/PBC OS in a noninvasive way. A total of 201 AILDs patients were included in this retrospective study who underwent liver biopsy during January 2011 to December 2020. Serological factors significantly associated with OS were determined by the univariate analysis. Two multivariate models based on these factors were constructed to predict the diagnosis of AIH/PBC OS using logistic regression and random forest analysis. The results showed that immunoglobulins G and M had significant importance in both models. In logistic regression model, anti-Sp100, anti-Ro-52, anti-SSA, or antinuclear antibody positivity were risk factors for OS. In random forest model, activated partial thromboplastin time and ɑ-fetoprotein level were important. To distinguish PBC and OS, the sensitivity and specificity of logistic regression model were 0.889 and 0.727, respectively, and the sensitivity and specificity of random forest model were 0.944 and 0.818, respectively. In conclusion, we established two predictive models for the diagnosis of AIH/PBC OS in a noninvasive method and they showed better performance than Paris criteria for the definition of AIH/PBC OS.

7.
Sheng Wu Gong Cheng Xue Bao ; 38(9): 3194-3214, 2022 Sep 25.
Artigo em Chinês | MEDLINE | ID: mdl-36151793

RESUMO

Long non-coding RNA (lncRNA) refers to non-coding RNA longer than 200 nt, with one or more short open reading frames (sORF), which encode functional micro-peptides. These functional micro-peptides often play key roles in various biological processes, such as Ca2+ transport, mitochondrial metabolism, myocyte fusion, cellular senescence and others. At the same time, these biological processes play a key role in the regulation of body homeostasis, diseases and cancers development and progression, embryonic development and other important physiological processes. Therefore, studying the potential regulatory mechanisms of micro-peptides encoded by lncRNA in organisms will help to further elucidate the potential regulatory processes in organisms. Furthermore, it will provide a new theoretical basis for the subsequent targeted treatment of diseases and improvement of animal growth performance. This review summarizes the latest research progress in the field of lncRNA-encoded micro-peptides, as well as the progress in the fields of muscle physiological regulation, inflammation and immunity, common human cancers, and embryonic development. Finally, the challenges of lncRNA-encoded micro-peptides are briefly described, with the aim to facilitate subsequent in-depth research on micro-peptides.


Assuntos
Neoplasias , RNA Longo não Codificante , Animais , Humanos , Neoplasias/genética , Neoplasias/terapia , Fases de Leitura Aberta , Peptídeos/química , RNA Longo não Codificante/genética
8.
Front Surg ; 9: 939505, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36176344

RESUMO

Introduction: Spinal dumbbell-shaped tumors are rare, usually benign tumors with intraspinal and paravertebral components connected through intervertebral foramen. Complete excision is often performed through traditional open surgery (TOS). The efficacy and long-term outcomes of minimally invasive surgery (MIS) have not been reported to date in resection of dumbbell-shaped spinal tumors. Purpose: The purpose was to evaluate the efficacy and long-term outcomes of minimally invasive resection combined with unilateral transforaminal intervertebral fusion (TIF) through comparing with TOS in the treatment of spinal dumbbell-shaped tumors. Methods: Fifteen patients underwent MIS and 18 patients underwent TOS. Thoracic dumbbell-shaped tumors were directly exposed after removal of costotransverse joints, adjacent rib components, unilateral hemilamina, and facet joints. Lumbar dumbbell-shaped tumors were completely exposed after removal of transverse processes, unilateral hemilamina, and facet joints. Whether for minimally invasive resection or traditional open removal, dumbbell-shaped tumors were completely excised and unilateral TIF was performed to guarantee spinal stability. All patients were followed up for 5 years at least. Results: The mean length of surgical incision for two groups was 3.47 ± 0.37 vs. 6.49 ± 0.39 cm (p < 0.05). The average duration of the operation was 131.67 ± 26.90 vs. 144.17 ± 23.59 min (p > 0.05). The mean blood loss was 172.00 ± 48.79 vs. 285.83 ± 99.31 ml (p < 0.05). No blood transfusions were required in the two groups. The median length of hospitalization was 6 vs. 10 days (range: 5-8 vs. 7-14 days). The patients of two groups were monitored for an average of 65.93 ± 3.88 vs. 65.78 ± 3.56 months. At 5-year follow-up, all patients presented with normal neurological function (American Spinal Injury Association scale E). The Oswestry Disability Index in the MIS group decreased significantly more than the TOS group. No spondylolisthesis or spinal instability were found in the follow-up period. There was no recurrence of any spinal tumor 5 years after surgery. Conclusions: Spinal dumbbell-shaped tumors can be safely and effectively treated with minimally invasive resection combined with unilateral TIF. Compared with TOS, MIS offers a reduced length of surgical incision, blood loss, hospital stay, and postoperative pain. This surgical protocol might provide an alternative for the treatment of spinal dumbbell-shaped tumors.

9.
J Nanobiotechnology ; 20(1): 419, 2022 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-36123746

RESUMO

Targeting cartilage is a promising strategy for the treatment of osteoarthritis, and various delivery vehicles were developed to assist the therapeutic agents into cartilage. However, the underlying biomechanisms and potential bioactivities remain oversimplified. Inspired by oxidative stress in the pathogenesis of osteoarthritis, we firstly testified the antioxidant capacity of a synthetic small molecule compound, oltipraz (OL), to the chondrocytes treated by IL-1ß. Then a functional reactive oxygen species (ROS) responsive nanocarrier, mesoporous silica nanoparticles (MSN) modified with methoxy polyethylene glycol-thioketal, was constructed. In vitro biomolecular results showed that compared with OL alone, MSN-OL could significantly activate Nrf2/HO-1 signaling pathway, which exhibited better ROS-scavenging proficiency and greater anti-apoptotic ability to protect mitochondrial membrane potential of chondrocytes. Further bioinformatics analysis revealed that MSN-OL suppressed clusters of genes associated with extracellular matrix organization, cell apoptosis and cellular response to oxidative stress. Animal experiments further confirmed the great cartilage-protecting ability of MSN-OL through upregulating the expression of Nrf2/HO-1 signaling pathway without obvious toxicity. In summary, this study provided a delivery system through ROS-responsive regulation of the therapeutic agents into chondrocytes of the cartilage, and confirmed the exact biological mechanisms of this innovative strategy.


Assuntos
Fator 2 Relacionado a NF-E2 , Osteoartrite , Animais , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Cartilagem/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Osteoartrite/tratamento farmacológico , Osteoartrite/metabolismo , Polietilenoglicóis/uso terapêutico , Espécies Reativas de Oxigênio/metabolismo , Dióxido de Silício/uso terapêutico
10.
Front Vet Sci ; 9: 959952, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36090177

RESUMO

Cashmere goat hair follicles are divided into primary hair follicles and secondary hair follicles. The primary hair follicles produce coarse hair, and the secondary hair follicles produce cashmere. The development of hair follicles is affected by a variety of signaling molecules and pathways. Studies have shown that non-coding RNAs are widely involved in the development of hair follicles of the goat, including small RNAs (miRNAs), long non-coding RNAs (lncRNA), and circular RNAs (circRNAs). In recent years, circRNAs, as a new type of circular closed non-coding RNAs, have attracted great attention due to their high stability. However, its regulatory effect on cashmere goat hair follicles mainly focuses on the periodic regulation of secondary hair follicles, and there is no report on the development of cashmere goat hair follicles during the fetal period. Therefore, this study was based on the circRNA, miRNA, and mRNA expression profiles obtained by whole-transcriptional sequencing of the skin tissue of the Inner Mongolia cashmere goats in the fetal period (days 45, 55, 65, and 75) and screening out the morphological changes of hair follicles at different periods. A total of 113 circRNAs related to the development of secondary hair follicles were present. According to the principle of the ceRNA regulatory network, a ceRNA regulatory network composed of 13 circRNAs, 21 miRNAs, and 110 mRNAs related to the development of secondary hair follicles was constructed. Then, qRT-PCR and Sanger sequencing identified circRNA2034, circRNA5712, circRNA888, and circRNA9127 were circRNAs. Next, the dual-luciferase reporter gene verified the targeting relationship of circRNA5712-miR-27b-3p-Dll4. In conclusion, this study constructed a ceRNA regulatory network for the development of cashmere goat secondary hair follicles, laying a foundation for the analysis of circRNAs regulating the morphogenesis and development of cashmere goat secondary hair follicles through the ceRNA mechanism.

11.
Front Vet Sci ; 9: 995604, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36118352

RESUMO

The hair follicle is a complex skin accessory organ, which determines hair growth. Long non-coding RNAs (lncRNAs) have been proven to play an important role in hair follicle development, but their specific mechanism is still unclear. In this study, high-throughput sequencing was used to obtain the expression profiles of lncRNA in the hair follicles of Inner Mongolian cashmere goats at different embryonic stages (45, 55, 65, and 75 days), and a total of 6,630 lncRNA were identified. According to the rules of hair follicle development, we combined miRNA and mRNA databases (published) and predicted lncRNA-miRNA, miRNA-mRNA, and lncRNA-mRNA interaction pairs in the 45 vs. 75 comparison group. We obtained 516 lncRNA-mRNA, 1,011 lncRNA-miRNA, and 7,411 miRNA-mRNA relationship pairs. Finally, target genes were analyzed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG), and it was found that they were mainly enriched in the Wnt signaling pathway and PI3K-Akt signaling pathway related to hair follicle development, indicating that lncRNA may interact with miRNA/mRNA to directly or indirectly regulate the expression of genes related to hair follicle development. Dual-luciferase reporter gene analysis showed that lncRNA MSTRG.1705.1 could bind to Chi-miR-1, while lncRNA MSTRG.11809.1 had no binding site for Chi-miR-433. In conclusion, this study aims to further analyze the molecular regulation mechanism of hair follicle development and to lay a theoretical foundation for revealing the regulation mechanism of cashmere hair follicle growth.

12.
Acta Biomater ; 151: 235-253, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-35961521

RESUMO

Compared with other types of hydrogels, natural derived hydrogels possess intrinsic advantages of degradability and biocompatibility. However, due to the low mechanical strength, their potential applications in biomedical areas are limited. In this study, Hofmeister effect-enhanced gelatin/oxidized dextran (Gel/O-Dex) hydrogels were designed with improved mechanical properties and biocompatibility to accelerate wound healing. Gel and O-Dex were chemically crosslinked through Schiff base reaction of aldehyde and amino groups. After soaking in kosmotrope solutions physical crosslinking domains were induced by Hofmeister effect including α-helix structures, hydrophobic interaction regions and helical junction zones among Gel molecular chains. The type of anions played different influence on the properties of hydrogels, which was consistent with the order of Hofmeister series. Particularly, H2PO4- treated hydrogels showed enhanced mechanical strength and fatigue resistance superior to that of Gel/O-Dex hydrogels. The underlying mechanism was that the physical crosslinking domains sustained additional mechanical stress and dissipated energy through cyclic association and dissociation process. Furthermore, Hofmeister effect only induced polymer chain entanglements without triggering any chemical reaction. Due to Hofmeister effect of H2PO4- ions, aldehyde groups were embedded in the center of entangled polymer chains that resulted in better biocompatibility. In the full-thickness skin defects of SD rats, Hofmeister effect-enhanced Gel/O-Dex hydrogels by H2PO4- ions accelerated wound healing and exhibited better histological morphology than ordinary hydrogels. Therefore, Hofmeister effect by essential inorganic anions is a promising method of improving mechanical properties and biocompatibility of natural hydrogels to promote medical translation in the field of wound healing from bench to clinic. STATEMENT OF SIGNIFICANCE: Hofmeister effect enhanced hydrogel mechanical properties in accordance with the order of Hofmeister series through physical crosslinking that induced α-helix structures, hydrophobic interaction regions and helical junction zones among Gel molecular chains. Due to the Hofmeister effect of H2PO4- ions, aldehyde groups were embedded in the center of entangled polymer chains that resulted in better biocompatibility. Hofmeister effect-enhanced Gel/O-Dex hydrogels through H2PO4- ions accelerated wound healing and exhibited better histological morphology than ordinary hydrogels. Therefore, Hofmeister effect by essential inorganic anions is a promising method to improve mechanical properties and biocompatibility of natural hydrogels for their medical applications..


Assuntos
Gelatina , Hidrogéis , Aldeídos , Animais , Dextranos/química , Dextranos/farmacologia , Gelatina/química , Gelatina/farmacologia , Hidrogéis/química , Hidrogéis/farmacologia , Ratos , Ratos Sprague-Dawley , Bases de Schiff/farmacologia , Cicatrização
13.
Small ; 18(27): e2201147, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35686342

RESUMO

Rupture of tendons and ligaments (T/L) is a major clinical challenge due to T/L possess anisotropic mechanical properties and hierarchical structures. Here, to imitate these characteristics, an approach is presented by fabricating hybrid nanofibrous composites. First, hybrid fiber-reinforced yarns are fabricated via successively electrospinning poly(L-lactide-co-ε-caprolactone) (PLCL) and gelatin (Ge) nanofibers onto polyethylene terephthalate (PET) fibers to improve biodurability and biocompatibility. Then, by comparing different manufacturing methods, the knitted structure succeeds in simulating anisotropic mechanical properties, even being stronger than natural ligaments, and possessing comfort compliance superior to clinically used ligament advanced reinforcement system (LARS) ligament. Moreover, after inoculation with tendon-derived stem cells and transplantation in vivo, hybrid nanofibrous composites are integrated with native tendons to guide surrounding tissue ingrowth due to the highly interconnected and porous structure. The knitted hybrid nanofibrous composites are also ligamentized and remodeled in vivo to promote tendon regeneration. Specifically, after the use of optimized anisotropic hybrid nanofibrous composites to repair tendon, the deposition of tendon-associated extracellular matrix proteins is more significant. Thus, this study indicates a strategy of manufacturing anisotropic hybrid nanofibrous composites with superior mechanical properties and good histocompatibility for clinical reconstruction.


Assuntos
Nanofibras , Ligamentos , Nanofibras/química , Poliésteres/química , Regeneração , Tendões , Engenharia Tecidual/métodos , Alicerces Teciduais/química
14.
Front Mol Biosci ; 9: 817517, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35769907

RESUMO

Long non-coding RNAs (lncRNAs) were originally defined as non-coding RNAs (ncRNAs) which lack protein-coding ability. However, with the emergence of technologies such as ribosome profiling sequencing and ribosome-nascent chain complex sequencing, it has been demonstrated that most lncRNAs have short open reading frames hence the potential to encode functional micropeptides. Such micropeptides have been described to be widely involved in life-sustaining activities in several organisms, such as homeostasis regulation, disease, and tumor occurrence, and development, and morphological development of animals, and plants. In this review, we focus on the latest developments in the field of lncRNA-encoded micropeptides, and describe the relevant computational tools and techniques for micropeptide prediction and identification. This review aims to serve as a reference for future research studies on lncRNA-encoded micropeptides.

15.
Ann Transl Med ; 10(6): 359, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35433970

RESUMO

Background: Arthroscopic anterior cruciate ligament reconstruction (ACLR) is the best treatment choice for returning to pre-injury activities following ACL rupture. Although allografts are considered an effective alternative to autografts, there is still controversy regarding the safety and effectiveness of this procedure, especially concerning the risk of postoperative infection and disease transmission. The purpose of this study was to compare the efficacy outcomes and safety between allografts and autografts in primary ACLR. Methods: The retrospective analysis involved 112 patients (58 patients received allogeneic tendons and 54 patients received autologous hamstring tendons) who underwent primary ACLR. All patients were followed up and evaluated on admission and at 1 week, 3 months, 6 months, and 1 year postoperatively. The efficacy outcome of the ACLR was evaluated by International Knee Documentation Committee (IKDC) score and physical examinations (Lachman test, anterior drawer test, and pivot shift test). The safety outcome of allografts and autografts was compared by investigating the occurrence of postoperative complications, including postoperative inflammation and potential disease transmission. The benefits of each operation for surgeons and patients were also analyzed, including the length of surgical incision and operative time. Results: There was no significant difference in the demographic and clinical characteristics between the allograft and autograft groups. The two cohorts proved to be similar in terms of the acute or chronic nature of the cruciate ligament and the incidence of concomitant meniscal surgery. Arthroscopic ACLR was performed in all patients. The physical examinations were all positive before surgery and negative immediately after the operation. The KT-1000 and IKDC scores of two groups significantly decreased than pre-operative ones (P<0.05), but the difference between the two groups was not statistically significant (P>0.05). At final follow-up, all patients had returned to their pre-injury activities. Allografts showed no increased risk for postoperative infection or potential disease transmission relative to autografts. Conclusions: The outcomes of reconstructed ACL with allografts were similar to those of autographs. Moreover, the safety of allografts showed to be comparable to that of autografts, especially concerning postoperative infection and disease transmission. Therefore, the surgical option should be chosen wisely according to the patient's condition.

16.
Funct Integr Genomics ; 22(5): 835-848, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35488101

RESUMO

microRNA (miRNA) is a type of endogenous short-chain non-coding RNA with regulatory function found in eukaryotes, which is involved in the regulation of a variety of cellular and biological processes. However, the research on the development of cashmere goat secondary hair follicles is still relatively scarce. In this study, small RNA libraries and mRNA libraries of 45 days, 55 days, 65 days, and 75 days of fetal skin of cashmere goats were constructed, and the constructed libraries were sequenced using Illumina Hiseq4000, and the expression profiles of miRNA and mRNA in cashmere goat fetal skin were obtained. The differentially expressed miRNAs and mRNAs in six control groups were identified and the qRT-PCR experiment shows that the sequencing results are accurate. Sixty-six miRNAs related to secondary hair follicle development were screened, and used TargetScan and miRanda to predict 33 highly expressed miRNA target genes. At the same time, 664 mRNAs related to the development of secondary hair follicles were screened, and GO enrichment and KEGG pathway analysis were performed. It was found that some miRNA target genes were consistent with the screening results of mRNAs related to secondary hair follicle development and were enriched in Notch signaling pathway, TGF-ß signaling pathway. Therefore, miR-145-5p-DLL4, miR-27b-3p-DLL4, miR-30e-5p-DLL4, miR-193b-3p-TGF-ß1, miR-181b-5p-NOTCH2, and miR-103-3p-NOTCH2 regulatory network related to the development of secondary hair follicles were constructed and the results of dual-luciferase reporter gene assay indicated that there is a targeted relationship between chi-miR-30e-5p and DLL4, which will provide a basis for molecular mechanism of miRNA-mRNA in the development of the hair follicles in cashmere goats.


Assuntos
Cabras , MicroRNAs , Animais , Perfilação da Expressão Gênica , Folículo Piloso , MicroRNAs/genética , MicroRNAs/metabolismo , Morfogênese , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/metabolismo
17.
Front Microbiol ; 13: 803041, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35369443

RESUMO

Current therapies for anthrax include the use of antibiotics (i.e., doxycycline, and ciprofloxacin), an anthrax vaccine (BioThrax) and Bacillus anthracis-specific, monoclonal antibody (mAb) (i.e., Raxibacumab and obiltoxaximab). In this study, we investigated the activity of immunomodulators, which potentiate inflammatory responses through innate immune receptors. The rationale for the use of innate immune receptor agonists as adjunctive immunomodulators for infectious diseases is based on the concept that augmentation of host defense should promote the antimicrobial mechanism of the host. Our aim was to explore the anti-B. anthracis effector function of Toll-like receptor (TLR) agonists using a mouse model. Amongst the six TLR ligands tested, Pam3CSK4 (TLR1/2 ligand) was the best at protecting mice from lethal challenge of B. anthracis. We then evaluated the activity of a novel TLR2 ligand, DA-98-WW07. DA-98-WW07 demonstrated enhanced protection in B. anthracis infected mice. The surviving mice that received DA-98-WW07 when re-challenged with B. anthracis 20 days post the first infection showed increased survival rate. Moreover, ciprofloxacin, when treated in adjunct with a suboptimal concentration of DA-98-WW07 demonstrated augmented activity in protecting mice from B. anthracis infection. Taken together, we report the prophylactic treatment potential of DA-98-WW07 for anthrax and the utility of immunomodulators in combination with an antibiotic to treat infections caused by the B. anthracis bacterium.

18.
Bioact Mater ; 15: 272-287, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35356813

RESUMO

Peripheral nerve injury is a great challenge in clinical work due to the restricted repair gap and weak regrowth ability. Herein, we selected induced pluripotent stem cells (iPSCs) derived exosomes to supplement acellular nerve grafts (ANGs) with the aim of restoring long-distance peripheral nerve defects. Human fibroblasts were reprogrammed into iPSCs through non-integrating transduction of Oct3/4, Sox2, Klf4, and c-Myc. The obtained iPSCs had highly active alkaline phosphatase expression and expressed Oct4, SSEA4, Nanog, Sox2, which also differentiated into all three germ layers in vivo and differentiated into mature peripheral neurons and Schwann cells (SCs) in vitro. After isolation and biological characteristics of iPSCs-derived exosomes, we found that numerous PKH26-labeled exosomes were internalized inside SCs through endocytotic pathway and exhibited a proliferative effect on SCs that were involved in the process of axonal regeneration and remyelination. After that, we prepared ANGs via optimized chemical extracted process to bridge 15 mm long-distance peripheral nerve gaps in rats. Owing to the promotion of iPSCs-derived exosomes, satisfactory regenerative outcomes were achieved including gait behavior analysis, electrophysiological assessment, and morphological analysis of regenerated nerves. Especially, motor function was restored with comparable to those achieved with nerve autografts and there were no significant differences in the fiber diameter and area of reinnervated muscle fibers. Taken together, our combined use of iPSCs-derived exosomes with ANGs demonstrates good promise to restore long-distance peripheral nerve defects, and thus represents a cell-free strategy for future clinical applications.

19.
ACS Appl Bio Mater ; 5(1): 243-251, 2022 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-35014810

RESUMO

As a noninvasive eye disease detection and drug delivery device, contact lenses can improve eye bioavailability and enable continuous drug delivery. In order to monitor the release of drugs in real time, molecularly imprinted contact lenses (MICLs) based on photonic crystals (PCs) were prepared for the treatment of diabetes-related diseases. The specific adsorption of molecularly imprinted polymers on dexamethasone sodium phosphate (DSP) increased the drug loading and optimized the drug release behavior. At the same time, the drug release ensures the rapid color report during the loading and releasing of drugs due to the volume and refractive index change of the hydrogel matrix. The continuous and slow release of DSP by MICLs in artificial tears was successfully monitored through structural color changes, and the cytotoxicity test results showed that the MICL had good biocompatibility. Therefore, MICLs with a PC structure color have great biomedical potentiality in the future.


Assuntos
Lentes de Contato , Sistemas de Liberação de Medicamentos/métodos , Liberação Controlada de Fármacos , Hidrogéis/química , Lágrimas
20.
Bioresour Technol ; 338: 125560, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34274578

RESUMO

Due to rapid deactivation of catalysts, the effective conversion of biomass with oxygen-rich and hydrogen-deficient characteristics to transportation fuels and high-valued chemicals via catalytic pyrolysis remains a challenge for commercialization. Hydrogen-rich plastic is used as feedstock co-fed with biomass to improve the catalytic pyrolysis process. The present work aims to investigate the co-pyrolysis process of cellulose and polyethylene (PE) over MgO by TG combined with photoionization time-of-flight mass spectrometry (PI-TOF-MS), which features on-line detection of catalytic pyrolysis products in real time. The MgO catalyst could improve the pyrolysis of cellulose and enhance the CC bond breaking of PE, respectively. During catalytic co-pyrolysis, the yields from olefins and furan as well as its derivatives can be enhanced obviously. Further, the formation of additional aromatics can be observed due to the Diels-Alder reaction. This work shows TG coupled to PI-TOF-MS is a powerful setup to study and optimize catalytic co-pyrolysis process.


Assuntos
Óxido de Magnésio , Pirólise , Biomassa , Catálise , Celulose , Temperatura Alta , Espectrometria de Massas , Polietileno
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...