Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 343: 59-67, 2018 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-28941838

RESUMO

Ciprofloxacin (CIP) is an antibiotic drug frequently detected in manure compost and is difficult to decompose at high temperatures, resulting in a potential threat to the environment. Microbial degradation is an effective and environmentally friendly method to degrade CIP. In this study, a thermophilic bacterium that can degrade CIP was isolated from sludge sampled from an antibiotics pharmaceutical factory. This strain is closely related to Thermus thermophilus based on 16S rRNA gene sequence analysis and is designated C419. The optimal temperature and pH values for CIP degradation are 70°C and 6.5, respectively, and an appropriate sodium acetate concentration promotes CIP degradation. Seven major biodegradation metabolites were identified by an ultra-performance liquid chromatography tandem mass spectrometry analysis. In addition, strain C419 degraded other fluoroquinolones, including ofloxacin, norfloxacin and enrofloxacin. The supernatant from the C419 culture grown in fluoroquinolone-containing media showed attenuated antibacterial activity. These results indicate that strain C419 might be a new auxiliary bacterial resource for the biodegradation of fluoroquinolone residue in thermal environments.


Assuntos
Antibacterianos/metabolismo , Ciprofloxacina/metabolismo , Thermus/metabolismo , Biodegradação Ambiental , Resíduos Industriais , Preparações Farmacêuticas , Esgotos/microbiologia , Acetato de Sódio/farmacologia , Thermus/efeitos dos fármacos , Thermus/crescimento & desenvolvimento , Thermus/isolamento & purificação
2.
World J Microbiol Biotechnol ; 33(5): 85, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28378223

RESUMO

Sulfamethazine (SM2) is an antimicrobial drug that is frequently detected in manure compost, is difficult to degrade at high temperatures and is potentially threatening to the environment. In this study, a thermophilic bacterium was isolated from the activated sludge of an antibiotics pharmaceutical factory; this bacterium has the ability to degrade SM2 at 70 °C, which is higher than the traditional manure composting temperature. The strain S-07 is closely related to Geobacillus thermoleovorans based on its 16S rRNA gene sequence. The optimal conditions for the degradation of SM2 are 70 °C, pH 6.0, 50 rpm rotation speed and 50 mL of culture volume. More than 95% of the SM2 contained in media was removed via co-metabolism within 24 h, which was a much higher percentage than that of the type strain of G. thermoleovorans. The supernatant from the S-07 culture grown in SM2-containing media showed slightly attenuated antibacterial activity. In addition, strain S-07 was able to degrade other sulfonamides, including sulfadiazine, sulfamethoxazole and sulfamerazine. These results imply that strain S-07 might be a new auxiliary bacterial resource for the biodegradation of sulfonamide residue in manure composting.


Assuntos
Geobacillus/classificação , Geobacillus/isolamento & purificação , Esgotos/microbiologia , Sulfametazina/metabolismo , Biodegradação Ambiental , DNA Bacteriano/genética , DNA Ribossômico/genética , Geobacillus/genética , Temperatura Alta , Concentração de Íons de Hidrogênio , Filogenia , RNA Ribossômico 16S/genética
3.
Huan Jing Ke Xue ; 38(9): 3970-3978, 2017 Sep 08.
Artigo em Chinês | MEDLINE | ID: mdl-29965281

RESUMO

Adsorption ceramsite (SKC) was prepared with biochar (BC) derived from municipal sludge and kaolin (KL) based on the optimized processing parameters to adsorb ciprofloxacin (CIP) in aqueous solutions. The CIP adsorption mechanism of SKC was investigated by adsorption kinetics and isotherm adsorption models, combined with the analysis of microstructure, pore structure, phase composition, and zeta potential. Furthermore, the heavy metal leaching toxicity was assessed using the toxicity characteristic leaching procedure (TCLP) method. The results showed that SKC, with 60% BC and 40% KL calcining at 1,050℃ for 5 min, showed an outstanding removal efficiency of CIP (65.34%). The pseudo-second-order equation agreed with the adsorption behavior and the Freundlich model described the adsorption process well. The adsorption process was a multilayer adsorption controlled by physical and chemical reactions. The leaching concentration of heavy metals, trapped by the mineral phases in SKC was much lower than that in BC, indicating low ecotoxicological risk. SKC possessed the ability to adsorb CIP with its developed porosity and characteristic mineralogical phases, including silicon aluminum oxide and iron oxide. This work provides a low-cost recyclable sorbing material to remove high concentration CIP from wastewater and offers a new idea for the large-scale safe use of BC.


Assuntos
Carvão Vegetal/química , Ciprofloxacina/isolamento & purificação , Esgotos , Poluentes Químicos da Água/isolamento & purificação , Adsorção , Cinética , Metais Pesados
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...