Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
J Food Sci Technol ; 55(1): 366-375, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29358829

RESUMO

Biofortification of crops with exogenous iodine is a novel strategy to control iodine deficiency disorders (IDD). The bioaccessibility of iodine (BI) in the biofortified vegetables in the course of soaking, cooking and digestion, were examined. Under hydroponics, the concentration of iodine in leafstalks of the celery and pakchoi increased with increasing exogenous iodine concentration, 54.8-63.9% of the iodine absorbed by pakchoi was stored in the soluble cellular substance. Being soaked in water within 8 h, the iodine loss rate of the biofortified celery was 3.5-10.4% only. More than 80% of the iodine in the biofortified celery was retained after cooking under high temperature. The highest BI of the biofortified vegetables after digestion in simulated gastric and intestinal juice amounted to 74.08 and 68.28%, respectively. Factors influencing BI included pH, digestion duration, and liquid-to-solid ratio. The high BI of the biofortified vegetables provided a sound reference for the promotion of iodine biofortification as a tool to eliminate the IDD.

2.
Biol Trace Elem Res ; 125(1): 59-71, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18521548

RESUMO

Iodine-enhanced vegetable has been proven to be an effective way to reduce iodine deficiency disorders in many regions. However, the knowledge about what mechanisms control plant uptake of iodine and where iodine is stored in plants is still very limited. A series of controlled experiments, including solution culture, pot planting, and field experiments were carried out to investigate the uptake mechanism of iodine in different forms. A new methodology for observing the iodine distribution within the plant tissues, based on AgI precipitation reaction and transmission electron microscope techniques, has been developed and successfully applied to Chinese cabbage. Results show that iodine uptake by Chinese cabbage was more effective when iodine was in the form of IO(3) (-) than in the form of I(-) if the concentration was low (<0.5 mg L(-1)), but the trend was opposite if iodine concentration was 0.5 mg L(-1) or higher. The uptake was more sensitive to metabolism inhibitor in lower concentration of iodine, which implies that the uptake mechanism transits from active to passive as the iodine concentration increases, especially when the iodine is in the form of IO(3) (-). The inorganic iodine fertilizer provided a quicker supply for plant uptake, but the higher level of iodine was toxic to plant growth. The organic iodine fertilizer (seaweed composite) provided a more sustainable iodine supply for plants. Most of the iodine uptake by the cabbage is intercepted and stored in the fibrins in the root while the iodine that is transported to the above-ground portion (shoots and leaves) is selectively stored in the chloroplasts.


Assuntos
Brassica/metabolismo , Iodo/metabolismo , Brassica/ultraestrutura , Fertilizantes , Humanos , Iodo/química , Alga Marinha/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...