Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 7(1): 16881, 2017 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-29203866

RESUMO

Mutations in the RPGR-interacting protein 1 (RPGRIP1) gene cause recessive Leber congenital amaurosis (LCA), juvenile retinitis pigmentosa (RP) and cone-rod dystrophy. RPGRIP1 interacts with other retinal disease-causing proteins and has been proposed to have a role in ciliary protein transport; however, its function remains elusive. Here, we describe a new zebrafish model carrying a nonsense mutation in the rpgrip1 gene. Rpgrip1homozygous mutants do not form rod outer segments and display mislocalization of rhodopsin, suggesting a role for RPGRIP1 in rhodopsin-bearing vesicle trafficking. Furthermore, Rab8, the key regulator of rhodopsin ciliary trafficking, was mislocalized in photoreceptor cells of rpgrip1 mutants. The degeneration of rod cells is early onset, followed by the death of cone cells. These phenotypes are similar to that observed in LCA and juvenile RP patients. Our data indicate RPGRIP1 is necessary for rod outer segment development through regulating ciliary protein trafficking. The rpgrip1 mutant zebrafish may provide a platform for developing therapeutic treatments for RP patients.


Assuntos
Cílios/metabolismo , Segmento Externo da Célula Bastonete/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/metabolismo , Animais , Códon sem Sentido , Transporte Proteico , Retina/metabolismo , Retina/patologia , Degeneração Retiniana/patologia , Rodopsina/metabolismo , Peixe-Zebra/crescimento & desenvolvimento , Proteínas de Peixe-Zebra/genética , Proteínas rab de Ligação ao GTP/metabolismo
2.
Blood ; 128(19): 2359-2366, 2016 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-27557946

RESUMO

The mechanisms that allow cells to bypass anti-vascular endothelial growth factor A (VEGFA) therapy remain poorly understood. Here we use zebrafish to investigate this question and first show that vegfaa mutants display a severe vascular phenotype that can surprisingly be rescued to viability by vegfaa messenger RNA injections at the 1-cell stage. Using vegfaa mutants as an in vivo test tube, we found that zebrafish Vegfbb, Vegfd, and Pgfb can also rescue these animals to viability. Taking advantage of a new vegfr1 tyrosine kinase-deficient mutant, we determined that Pgfb rescues vegfaa mutants via Vegfr1. Altogether, these data reveal potential resistance routes against current anti-VEGFA therapies. In order to circumvent this resistance, we engineered and validated new dominant negative Vegfa molecules that by trapping Vegf family members can block vascular development. Thus, our results show that Vegfbb, Vegfd, and Pgfb can sustain vascular development in the absence of VegfA, and our newly engineered Vegf molecules expand the toolbox for basic research and antiangiogenic therapy.


Assuntos
Transdução de Sinais , Fator A de Crescimento do Endotélio Vascular/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/metabolismo , Envelhecimento/patologia , Animais , Artérias/crescimento & desenvolvimento , Artérias/patologia , Diferenciação Celular , Genes Dominantes , Ligantes , Mutação/genética , Neovascularização Fisiológica , Engenharia de Proteínas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Peixe-Zebra/genética
3.
Zebrafish ; 13 Suppl 1: S8-S18, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27351619

RESUMO

In China, the use of zebrafish as an experimental animal in the past 15 years has widely expanded. The China Zebrafish Resource Center (CZRC), which was established in 2012, is becoming one of the major resource centers in the global zebrafish community. Large-scale use and regular exchange of zebrafish resources have put forward higher requirements on zebrafish health issues in China. This article reports the current aquatic infrastructure design, animal husbandry, and health-monitoring programs in the CZRC. Meanwhile, through a survey of 20 Chinese zebrafish laboratories, we also describe the current health status of major zebrafish facilities in China. We conclude that it is of great importance to establish a widely accepted health standard and health-monitoring strategy in the Chinese zebrafish research community.


Assuntos
Criação de Animais Domésticos/normas , Animais de Laboratório , Aquicultura/normas , Peixe-Zebra , Criação de Animais Domésticos/organização & administração , Animais , Aquicultura/organização & administração , China , Modelos Animais
5.
BMC Genomics ; 16: 83, 2015 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-25886285

RESUMO

BACKGROUND: Targeting Induced Local Lesions IN Genomes (TILLING) is a reverse genetics approach to directly identify point mutations in specific genes of interest in genomic DNA from a large chemically mutagenized population. Classical TILLING processes, based on enzymatic detection of mutations in heteroduplex PCR amplicons, are slow and labor intensive. RESULTS: Here we describe a new TILLING strategy in zebrafish using direct next generation sequencing (NGS) of 250 bp amplicons followed by Paired-End Low-Error (PELE) sequence analysis. By pooling a genomic DNA library made from over 9,000 N-ethyl-N-nitrosourea (ENU) mutagenized F1 fish into 32 equal pools of 288 fish, each with a unique Illumina barcode, we reduce the complexity of the template to a level at which we can detect mutations that occur in a single heterozygous fish in the entire library. MiSeq sequencing generates 250 base-pair overlapping paired-end reads, and PELE analysis aligns the overlapping sequences to each other and filters out any imperfect matches, thereby eliminating variants introduced during the sequencing process. We find that this filtering step reduces the number of false positive calls 50-fold without loss of true variant calls. After PELE we were able to validate 61.5% of the mutant calls that occurred at a frequency between 1 mutant call:100 wildtype calls and 1 mutant call:1000 wildtype calls in a pool of 288 fish. We then use high-resolution melt analysis to identify the single heterozygous mutation carrier in the 288-fish pool in which the mutation was identified. CONCLUSIONS: Using this NGS-TILLING protocol we validated 28 nonsense or splice site mutations in 20 genes, at a two-fold higher efficiency than using traditional Cel1 screening. We conclude that this approach significantly increases screening efficiency and accuracy at reduced cost and can be applied in a wide range of organisms.


Assuntos
Etilnitrosoureia/toxicidade , Genoma/efeitos dos fármacos , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Animais , Códon sem Sentido/efeitos dos fármacos , DNA/análise , DNA/isolamento & purificação , Biblioteca Gênica , Genômica/normas , Sequenciamento de Nucleotídeos em Larga Escala/normas , Masculino , Mutação/efeitos dos fármacos , Sítios de Splice de RNA/genética , Análise de Sequência de DNA , Espermatozoides/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
6.
Dev Dyn ; 243(12): 1511-23, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25130183

RESUMO

BACKGROUND: Schwann cells, which arise from the neural crest, are the myelinating glia of the peripheral nervous system. During development neural crest and their Schwann cell derivatives engage in a sequence of events that comprise delamination from the neuroepithelium, directed migration, axon ensheathment, and myelin membrane synthesis. At each step neural crest and Schwann cells are polarized, suggesting important roles for molecules that create cellular asymmetries. In this work we investigated the possibility that one polarity protein, Pard3, contributes to the polarized features of neural crest and Schwann cells that are associated with directed migration and myelination. RESULTS: We analyzed mutant zebrafish embryos deficient for maternal and zygotic pard3 function. Time-lapse imaging revealed that neural crest delamination was normal but that migrating cells were disorganized with substantial amounts of overlapping membrane. Nevertheless, neural crest cells migrated to appropriate peripheral targets. Schwann cells wrapped motor axons and, although myelin gene expression was delayed, myelination proceeded to completion. CONCLUSIONS: Pard3 mediates contact inhibition between neural crest cells and promotes timely myelin gene expression but is not essential for neural crest migration or myelination.


Assuntos
Proteínas de Transporte/biossíntese , Diferenciação Celular/fisiologia , Movimento Celular/fisiologia , Crista Neural/embriologia , Células de Schwann/metabolismo , Proteínas de Peixe-Zebra/biossíntese , Peixe-Zebra/embriologia , Animais , Axônios/metabolismo , Proteínas de Transporte/genética , Polaridade Celular/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Neurônios Motores/citologia , Neurônios Motores/metabolismo , Crista Neural/citologia , Células de Schwann/citologia , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
7.
Development ; 141(7): 1544-52, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24598161

RESUMO

Differentiation of arteries and veins is essential for the development of a functional circulatory system. In vertebrate embryos, genetic manipulation of Notch signaling has demonstrated the importance of this pathway in driving artery endothelial cell differentiation. However, when and where Notch activation occurs to affect endothelial cell fate is less clear. Using transgenic zebrafish bearing a Notch-responsive reporter, we demonstrate that Notch is activated in endothelial progenitors during vasculogenesis prior to blood vessel morphogenesis and is maintained in arterial endothelial cells throughout larval stages. Furthermore, we find that endothelial progenitors in which Notch is activated are committed to a dorsal aorta fate. Interestingly, some arterial endothelial cells subsequently downregulate Notch signaling and then contribute to veins during vascular remodeling. Lineage analysis, together with perturbation of both Notch receptor and ligand function, further suggests several distinct developmental windows in which Notch signaling acts to promote artery commitment and maintenance. Together, these findings demonstrate that Notch acts in distinct contexts to initiate and maintain artery identity during embryogenesis.


Assuntos
Artérias/embriologia , Padronização Corporal/genética , Receptores Notch/fisiologia , Animais , Animais Geneticamente Modificados , Artérias/citologia , Diferenciação Celular/genética , Embrião não Mamífero , Endotélio Vascular/embriologia , Morfogênese/genética , Neovascularização Fisiológica/genética , Transdução de Sinais/fisiologia , Veias/embriologia , Peixe-Zebra/embriologia , Peixe-Zebra/genética
8.
Dev Biol ; 385(2): 189-99, 2014 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-24269905

RESUMO

Phenotypic robustness requires a process of developmental buffering that is largely not understood, but which can be disrupted by mutations. Here we show that in mef2ca(b1086) loss of function mutant embryos and early larvae, development of craniofacial hyoid bones, the opercle (Op) and branchiostegal ray (BR), becomes remarkably unstable; the large magnitude of the instability serves as a positive attribute to learn about features of this developmental buffering. The OpBR mutant phenotype variably includes bone expansion and fusion, Op duplication, and BR homeosis. Formation of a novel bone strut, or a bone bridge connecting the Op and BR together occurs frequently. We find no evidence that the phenotypic stability in the wild type is provided by redundancy between mef2ca and its co-ortholog mef2cb, or that it is related to the selector (homeotic) gene function of mef2ca. Changes in dorsal-ventral patterning of the hyoid arch also might not contribute to phenotypic instability in mutants. However, subsequent development of the bone lineage itself, including osteoblast differentiation and morphogenetic outgrowth, shows marked variation. Hence, steps along the developmental trajectory appear differentially sensitive to the loss of buffering, providing focus for the future study.


Assuntos
Desenvolvimento Ósseo/genética , Larva/crescimento & desenvolvimento , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/embriologia , Animais , Genes Homeobox , Peixe-Zebra/genética , Peixe-Zebra/crescimento & desenvolvimento
9.
Development ; 141(2): 307-17, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24306108

RESUMO

Brain pericytes are important regulators of brain vascular integrity, permeability and blood flow. Deficiencies of brain pericytes are associated with neonatal intracranial hemorrhage in human fetuses, as well as stroke and neurodegeneration in adults. Despite the important functions of brain pericytes, the mechanisms underlying their development are not well understood and little is known about how pericyte density is regulated across the brain. The Notch signaling pathway has been implicated in pericyte development, but its exact roles remain ill defined. Here, we report an investigation of the Notch3 receptor using zebrafish as a model system. We show that zebrafish brain pericytes express notch3 and that notch3 mutant zebrafish have a deficit of brain pericytes and impaired blood-brain barrier function. Conditional loss- and gain-of-function experiments provide evidence that Notch3 signaling positively regulates brain pericyte proliferation. These findings establish a new role for Notch signaling in brain vascular development whereby Notch3 signaling promotes expansion of the brain pericyte population.


Assuntos
Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Pericitos/citologia , Pericitos/metabolismo , Receptores Notch/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/crescimento & desenvolvimento , Peixe-Zebra/metabolismo , Animais , Animais Geneticamente Modificados , Barreira Hematoencefálica/crescimento & desenvolvimento , Barreira Hematoencefálica/metabolismo , Encéfalo/irrigação sanguínea , Contagem de Células , Diferenciação Celular , Proliferação de Células , Hemorragia Cerebral/etiologia , Hemorragia Cerebral/genética , Hemorragia Cerebral/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Mutação , Receptor Notch3 , Receptor beta de Fator de Crescimento Derivado de Plaquetas/genética , Receptor beta de Fator de Crescimento Derivado de Plaquetas/metabolismo , Receptores Notch/deficiência , Receptores Notch/genética , Transdução de Sinais , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/deficiência , Proteínas de Peixe-Zebra/genética
10.
Development ; 140(16): 3335-47, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23863484

RESUMO

Maintaining the homeostasis of germinal zones in adult organs is a fundamental but mechanistically poorly understood process. In particular, what controls stem cell activation remains unclear. We have previously shown that Notch signaling limits neural stem cell (NSC) proliferation in the adult zebrafish pallium. Combining pharmacological and genetic manipulations, we demonstrate here that long-term Notch invalidation primarily induces NSC amplification through their activation from quiescence and increased occurrence of symmetric divisions. Expression analyses, morpholino-mediated invalidation and the generation of a notch3-null mutant directly implicate Notch3 in these effects. By contrast, abrogation of notch1b function results in the generation of neurons at the expense of the activated NSC state. Together, our results support a differential involvement of Notch receptors along the successive steps of NSC recruitment. They implicate Notch3 at the top of this hierarchy to gate NSC activation and amplification, protecting the homeostasis of adult NSC reservoirs under physiological conditions.


Assuntos
Ciclo Celular , Proliferação de Células , Células-Tronco Neurais/metabolismo , Neuroglia/citologia , Receptores Notch/metabolismo , Transdução de Sinais , Proteínas de Peixe-Zebra/metabolismo , Animais , Animais Geneticamente Modificados/genética , Animais Geneticamente Modificados/metabolismo , Encéfalo/citologia , Encéfalo/metabolismo , Embrião não Mamífero/citologia , Embrião não Mamífero/metabolismo , Técnicas de Silenciamento de Genes , Morfolinos , Células-Tronco Neurais/citologia , Neuroglia/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Receptor Notch1/genética , Receptor Notch1/metabolismo , Receptor Notch3 , Receptores Notch/genética , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética
11.
Development ; 140(13): 2765-75, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23698351

RESUMO

The evolution of joints, which afford skeletal mobility, was instrumental in vertebrate success. Here, we explore the molecular genetics and cell biology that govern jaw joint development. Genetic manipulation experiments in zebrafish demonstrate that functional loss, or gain, of the homeobox-containing gene barx1 produces gain, or loss, of joints, respectively. Ectopic joints in barx1 mutant animals are present in every pharyngeal segment, and are associated with disrupted attachment of bone, muscles and teeth. We find that ectopic joints develop at the expense of cartilage. Time-lapse experiments suggest that barx1 controls the skeletal precursor cell choice between differentiating into cartilage versus joint cells. We discovered that barx1 functions in this choice, in part, by regulating the transcription factor hand2. We further show that hand2 feeds back to negatively regulate barx1 expression. We consider the possibility that changes in barx1 function in early vertebrates were among the key innovations fostering the evolution of skeletal joints.


Assuntos
Cartilagem/embriologia , Ossos Faciais/metabolismo , Articulações/embriologia , Crânio/metabolismo , Fatores de Transcrição/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/embriologia , Peixe-Zebra/metabolismo , Animais , Cartilagem/metabolismo , Ossos Faciais/embriologia , Articulações/metabolismo , Crânio/embriologia , Fatores de Transcrição/genética , Proteínas de Peixe-Zebra/genética
12.
Dev Cell ; 24(3): 296-309, 2013 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-23375584

RESUMO

The pharyngeal pouches, which form by budding of the foregut endoderm, are essential for segmentation of the vertebrate face. To date, the cellular mechanism and segmental nature of such budding have remained elusive. Here, we find that Wnt11r and Wnt4a from the head mesoderm and ectoderm, respectively, play distinct roles in the segmental formation of pouches in zebrafish. Time-lapse microscopy, combined with mutant and tissue-specific transgenic experiments, reveal requirements of Wnt signaling in two phases of endodermal epithelial transitions. Initially, Wnt11r and Rac1 destabilize the endodermal epithelium to promote the lateral movement of pouch-forming cells. Next, Wnt4a and Cdc42 signaling induce the rearrangement of maturing pouch cells into bilayers through junctional localization of the Alcama immunoglobulin-domain protein, which functions to restabilize adherens junctions. We propose that this dynamic control of epithelial morphology by Wnt signaling may be a common theme for the budding of organ anlagen from the endoderm.


Assuntos
Padronização Corporal , Proteínas Wnt , Proteína Wnt4 , Proteínas de Peixe-Zebra , Peixe-Zebra , Junções Aderentes/metabolismo , Animais , Padronização Corporal/genética , Padronização Corporal/fisiologia , Desenvolvimento Embrionário , Epitélio/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Mesoderma/crescimento & desenvolvimento , Mesoderma/metabolismo , Faringe/crescimento & desenvolvimento , Faringe/metabolismo , Transdução de Sinais , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , Via de Sinalização Wnt , Proteína Wnt4/genética , Proteína Wnt4/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/crescimento & desenvolvimento , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , Proteínas rac1 de Ligação ao GTP/genética , Proteínas rac1 de Ligação ao GTP/metabolismo
13.
Hum Mol Genet ; 22(12): 2376-86, 2013 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-23427147

RESUMO

Mutations in the transactive response DNA binding protein-43 (TARDBP/TDP-43) gene, which regulates transcription and splicing, causes a familial form of amyotrophic lateral sclerosis (ALS). Here, we characterize and report the first tardbp mutation in zebrafish, which introduces a premature stop codon (Y220X), eliminating expression of the Tardbp protein. Another TARDBP ortholog, tardbpl, in zebrafish is shown to encode a Tardbp-like protein which is truncated compared with Tardbp itself and lacks part of the C-terminal glycine-rich domain (GRD). Here, we show that tardbp mutation leads to the generation of a novel tardbpl splice form (tardbpl-FL) capable of making a full-length Tardbp protein (Tardbpl-FL), which compensates for the loss of Tardbp. This finding provides a novel in vivo model to study TDP-43-mediated splicing regulation. Additionally, we show that elimination of both zebrafish TARDBP orthologs results in a severe motor phenotype with shortened motor axons, locomotion defects and death at around 10 days post fertilization. The Tardbp/Tardbpl knockout model generated in this study provides an excellent in vivo system to study the role of the functional loss of Tardbp and its involvement in ALS pathogenesis.


Assuntos
Esclerose Lateral Amiotrófica/genética , Axônios/metabolismo , Proteínas de Ligação a DNA/genética , Neurônios Motores/metabolismo , Splicing de RNA , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Esclerose Lateral Amiotrófica/embriologia , Esclerose Lateral Amiotrófica/metabolismo , Animais , Proteínas de Ligação a DNA/metabolismo , Modelos Animais de Doenças , Feminino , Técnicas de Inativação de Genes , Humanos , Masculino , Mutação , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
14.
Dev Biol ; 369(2): 199-210, 2012 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-22750409

RESUMO

Mef2 transcription factors have been strongly linked with early heart development. D-mef2 is required for heart formation in Drosophila, but whether Mef2 is essential for vertebrate cardiomyocyte (CM) differentiation is unclear. In mice, although Mef2c is expressed in all CMs, targeted deletion of Mef2c causes lethal loss of second heart field (SHF) derivatives and failure of cardiac looping, but first heart field CMs can differentiate. Here we examine Mef2 function in early heart development in zebrafish. Two Mef2c genes exist in zebrafish, mef2ca and mef2cb. Both are expressed similarly in the bilateral heart fields but mef2cb is strongly expressed in the heart poles at the primitive heart tube stage. By using fish mutants for mef2ca and mef2cb and antisense morpholinos to knock down either or both Mef2cs, we show that Mef2ca and Mef2cb have essential but redundant roles in myocardial differentiation. Loss of both Mef2ca and Mef2cb function does not interfere with early cardiogenic markers such as nkx2.5, gata4 and hand2 but results in a dramatic loss of expression of sarcomeric genes and myocardial markers such as bmp4, nppa, smyd1b and late nkx2.5 mRNA. Rare residual CMs observed in mef2ca;mef2cb double mutants are ablated by a morpholino capable of knocking down other Mef2s. Mef2cb over-expression activates bmp4 within the cardiogenic region, but no ectopic CMs are formed. Surprisingly, anterior mesoderm and other tissues become skeletal muscle. Mef2ca single mutants have delayed heart development, but form an apparently normal heart. Mef2cb single mutants have a functional heart and are viable adults. Our results show that the key role of Mef2c in myocardial differentiation is conserved throughout the vertebrate heart.


Assuntos
Proteínas Musculares/genética , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Fatores de Regulação Miogênica/genética , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Animais , Animais Geneticamente Modificados , Sequência de Bases , Diferenciação Celular/genética , Primers do DNA/genética , Regulação da Expressão Gênica no Desenvolvimento , Coração/embriologia , Desenvolvimento Muscular/genética , Mutação , Miocárdio/citologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
15.
PLoS Genet ; 8(6): e1002754, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22719264

RESUMO

The pancreaticobiliary ductal system connects the liver and pancreas to the intestine. It is composed of the hepatopancreatic ductal (HPD) system as well as the intrahepatic biliary ducts and the intrapancreatic ducts. Despite its physiological importance, the development of the pancreaticobiliary ductal system remains poorly understood. The SRY-related transcription factor SOX9 is expressed in the mammalian pancreaticobiliary ductal system, but the perinatal lethality of Sox9 heterozygous mice makes loss-of-function analyses challenging. We turned to the zebrafish to assess the role of SOX9 in pancreaticobiliary ductal system development. We first show that zebrafish sox9b recapitulates the expression pattern of mouse Sox9 in the pancreaticobiliary ductal system and use a nonsense allele of sox9b, sox9b(fh313), to dissect its function in the morphogenesis of this structure. Strikingly, sox9b(fh313) homozygous mutants survive to adulthood and exhibit cholestasis associated with hepatic and pancreatic duct proliferation, cyst formation, and fibrosis. Analysis of sox9b(fh313) mutant embryos and larvae reveals that the HPD cells appear to mis-differentiate towards hepatic and/or pancreatic fates, resulting in a dysmorphic structure. The intrahepatic biliary cells are specified but fail to assemble into a functional network. Similarly, intrapancreatic duct formation is severely impaired in sox9b(fh313) mutants, while the embryonic endocrine and acinar compartments appear unaffected. The defects in the intrahepatic and intrapancreatic ducts of sox9b(fh313) mutants worsen during larval and juvenile stages, prompting the adult phenotype. We further show that Sox9b interacts with Notch signaling to regulate intrahepatic biliary network formation: sox9b expression is positively regulated by Notch signaling, while Sox9b function is required to maintain Notch signaling in the intrahepatic biliary cells. Together, these data reveal key roles for SOX9 in the morphogenesis of the pancreaticobiliary ductal system, and they cast human Sox9 as a candidate gene for pancreaticobiliary duct malformation-related pathologies.


Assuntos
Ductos Biliares Intra-Hepáticos/crescimento & desenvolvimento , Fígado/crescimento & desenvolvimento , Pâncreas/crescimento & desenvolvimento , Fatores de Transcrição SOX9/genética , Proteínas de Peixe-Zebra/genética , Peixe-Zebra , Animais , Ductos Biliares Intra-Hepáticos/embriologia , Ductos Biliares Intra-Hepáticos/metabolismo , Códon sem Sentido , Regulação da Expressão Gênica no Desenvolvimento , Fígado/embriologia , Fígado/metabolismo , Morfogênese/genética , Pâncreas/embriologia , Pâncreas/metabolismo , Receptores Notch/genética , Receptores Notch/metabolismo , Fatores de Transcrição SOX9/metabolismo , Transdução de Sinais , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
16.
Dev Biol ; 366(2): 268-78, 2012 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-22537488

RESUMO

Recent zebrafish studies have shown that the late appearing pancreatic endocrine cells are derived from pancreatic ducts but the regulatory factors involved are still largely unknown. Here, we show that the zebrafish sox9b gene is expressed in pancreatic ducts where it labels the pancreatic Notch-responsive cells previously shown to be progenitors. Inactivation of sox9b disturbs duct formation and impairs regeneration of beta cells from these ducts in larvae. sox9b expression in the midtrunk endoderm appears at the junction of the hepatic and ventral pancreatic buds and, by the end of embryogenesis, labels the hepatopancreatic ductal system as well as the intrapancreatic and intrahepatic ducts. Ductal morphogenesis and differentiation are specifically disrupted in sox9b mutants, with the dysmorphic hepatopancreatic ducts containing misdifferentiated hepatocyte-like and pancreatic-like cells. We also show that maintenance of sox9b expression in the extrapancreatic and intrapancreatic ducts requires FGF and Notch activity, respectively, both pathways known to prevent excessive endocrine differentiation in these ducts. Furthermore, beta cell recovery after specific ablation is severely compromised in sox9b mutant larvae. Our data position sox9b as a key player in the generation of secondary endocrine cells deriving from pancreatic ducts in zebrafish.


Assuntos
Hepatopâncreas/embriologia , Ilhotas Pancreáticas/fisiologia , Fatores de Transcrição SOX9/fisiologia , Proteínas de Peixe-Zebra/fisiologia , Peixe-Zebra/embriologia , Animais , Fatores de Crescimento de Fibroblastos/fisiologia , Hepatopâncreas/fisiologia , Pâncreas/citologia , Pâncreas/fisiologia , Receptores Notch/fisiologia , Regeneração , Transdução de Sinais , Peixe-Zebra/fisiologia
17.
FASEB J ; 25(12): 4184-97, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21859895

RESUMO

Disc1 is a schizophrenia risk gene that engages multiple signaling pathways during neurogenesis and brain development. Using the zebrafish as a tool, we analyze the function of zebrafish Disc1 (zDisc1) at the earliest stages of brain and body development. We define a "tool" as a biological system that gives insight into mechanisms underlying a human disorder, although the system does not phenocopy the disorder. A zDisc1 peptide binds to GSK3ß, and zDisc1 directs early brain development and neurogenesis, by promoting ß-catenin-mediated Wnt signaling and inhibiting GSK3ß activity. zDisc1 loss-of-function embryos additionally display a convergence and extension phenotype, demonstrated by abnormal movement of dorsolateral cells during gastrulation, through changes in gene expression, and later through formation of abnormal, U-shaped muscle segments, and a truncated tail. These phenotypes are caused by alterations in the noncanonical Wnt pathway, via Daam and Rho signaling. The convergence and extension phenotype can be rescued by a dominant negative GSK3ß construct, suggesting that zDisc1 inhibits GSK3ß activity during noncanonical Wnt signaling. This is the first demonstration that Disc1 modulates the noncanonical Wnt pathway and suggests a previously unconsidered mechanism by which Disc1 may contribute to the etiology of neuropsychiatric disorders.


Assuntos
Proteínas do Tecido Nervoso/metabolismo , Via de Sinalização Wnt , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/embriologia , Peixe-Zebra/metabolismo , beta Catenina/metabolismo , Sequência de Aminoácidos , Animais , Animais Geneticamente Modificados , Sequência de Bases , Sítios de Ligação , Encéfalo/embriologia , Encéfalo/metabolismo , Sequência Conservada , Primers do DNA/genética , Desenvolvimento Embrionário/genética , Desenvolvimento Embrionário/fisiologia , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Humanos , Mutagênese , Proteínas do Tecido Nervoso/antagonistas & inibidores , Proteínas do Tecido Nervoso/genética , Neurogênese/genética , Neurogênese/fisiologia , Oligodesoxirribonucleotídeos Antissenso/genética , Homologia de Sequência de Aminoácidos , Transdução de Sinais , Especificidade da Espécie , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/antagonistas & inibidores , Proteínas de Peixe-Zebra/genética
18.
J Neurosci ; 31(27): 9869-78, 2011 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-21734278

RESUMO

Studies of the zebrafish epithalamus have provided recent insights into the development of left-right brain asymmetry, which is crucial to normal human brain function. The habenular nuclei of zebrafish are robustly asymmetric, with dense elaboration of neuropil only in the left lateral subnucleus. Because this feature is tightly correlated with asymmetric expression of K(+) channel tetramerization domain-containing proteins 12.1 and 12.2 (Kctd12.1/12.2), we screened for Kctd12.1-interacting proteins to identify molecular mechanisms leading to neuropil asymmetry, and uncovered a novel interaction between Kctd12.1 and Unc-51-like kinase 2 (Ulk2). We show here that knockdown of Ulk2 or overexpression of Kctd12 proteins reduces asymmetric neuropil elaboration. Conversely, overexpression of Ulk2 or mutation of kctd12 genes causes excess neuropil elaboration. We conclude that Ulk2 activity promotes neuropil elaboration while Kctd12 proteins limit Ulk2 activity asymmetrically. This work describes a regulatory mechanism for neuronal process extension that may be conserved in other developmental contexts in addition to the epithalamus.


Assuntos
Lateralidade Funcional/fisiologia , Habenula/citologia , Inibição Psicológica , Neurópilo/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Alquilantes/farmacologia , Animais , Animais Geneticamente Modificados , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Etilnitrosoureia/farmacologia , Lateralidade Funcional/efeitos dos fármacos , Lateralidade Funcional/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Proteínas de Fluorescência Verde/genética , Habenula/efeitos dos fármacos , Habenula/crescimento & desenvolvimento , Habenula/lesões , Imunoprecipitação , Larva , Mutação/genética , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neurópilo/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-myc/metabolismo , RNA Mensageiro/metabolismo , Tubulina (Proteína)/metabolismo , Técnicas do Sistema de Duplo-Híbrido , Peixe-Zebra , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
19.
Development ; 136(9): 1571-81, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19297412

RESUMO

Hypoparathyroidism, mental retardation and facial dysmorphism (HRD) is a fatal developmental disease caused by mutations in tubulin-specific chaperone E (TBCE). A mouse Tbce mutation causes progressive motor neuronopathy. To dissect the functions of TBCE and the pathogenesis of HRD, we generated mutations in Drosophila tbce, and manipulated its expression in a tissue-specific manner. Drosophila tbce nulls are embryonic lethal. Tissue-specific knockdown and overexpression of tbce in neuromusculature resulted in disrupted and increased microtubules, respectively. Alterations in TBCE expression also affected neuromuscular synapses. Genetic analyses revealed an antagonistic interaction between TBCE and the microtubule-severing protein Spastin. Moreover, treatment of muscles with the microtubule-depolymerizing drug nocodazole implicated TBCE as a tubulin polymerizing protein. Taken together, our results demonstrate that TBCE is required for the normal development and function of neuromuscular synapses and that it promotes microtubule formation. As defective microtubules are implicated in many neurological and developmental diseases, our work on TBCE may offer novel insights into their basis.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/metabolismo , Microtúbulos/metabolismo , Chaperonas Moleculares/metabolismo , Sinapses/metabolismo , Sequência de Aminoácidos , Animais , Citoplasma/metabolismo , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Larva/genética , Larva/crescimento & desenvolvimento , Larva/metabolismo , Locomoção , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Dados de Sequência Molecular , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
20.
Mol Cell Neurosci ; 37(4): 747-60, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18280750

RESUMO

Fragile X syndrome is caused by loss of the FMRP translational regulator. A current hypothesis proposes that FMRP functions downstream of mGluR signaling to regulate synaptic connections. Using the Drosophila disease model, we test relationships between dFMRP and the sole Drosophila mGluR (DmGluRA) by assaying protein expression, behavior and neuron structure in brain and NMJ; in single mutants, double mutants and with an mGluR antagonist. At the protein level, dFMRP is upregulated in dmGluRA mutants, and DmGluRA is upregulated in dfmr1 mutants, demonstrating mutual negative feedback. Null dmGluRA mutants display defects in coordinated movement behavior, which are rescued by removing dFMRP expression. Null dfmr1 mutants display increased NMJ presynaptic structural complexity and elevated presynaptic vesicle pools, which are rescued by blocking mGluR signaling. Null dfmr1 brain neurons similarly display increased presynaptic architectural complexity, which is rescued by blocking mGluR signaling. These data show that DmGluRA and dFMRP convergently regulate presynaptic properties.


Assuntos
Proteínas de Drosophila/fisiologia , Proteína do X Frágil da Deficiência Intelectual/fisiologia , Junção Neuromuscular/fisiologia , Receptores de Glutamato Metabotrópico/fisiologia , Transdução de Sinais/fisiologia , Animais , Comportamento Animal/fisiologia , Drosophila , Proteínas de Drosophila/genética , Proteína do X Frágil da Deficiência Intelectual/genética , Movimento/fisiologia , Mutação , Junção Neuromuscular/ultraestrutura , Receptores de Glutamato Metabotrópico/genética , Transdução de Sinais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...