Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(28): 36471-36478, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38955805

RESUMO

In the development of back electrodes for perovskite solar cells (PSCs), the major challenges are stability and cost. To address this, we present an innovative approach: Simultaneous evaporation of two independently controlled sources of metal materials was performed to achieve a uniform distribution of the alloy electrodes. In this study, Ag-Cu alloys (the molar ratio of Ag/Cu is 7/3) with a high-index crystal face (111) and a work function matching perovskite were prepared using a codeposition technique. These properties mitigate nonradiative carrier recombination at the interface and reduce the energy barrier for carrier migration. Consequently, compared to Ag based PSCs (22.77%), the implementation of Ag-Cu alloy (Ag/Cu is 7/3)-based PSCs resulted in a power conversion efficiency of 23.72%. In a 1500 h tracking test in ambient air, the Ag-Cu alloy (Ag/Cu is 7/3)-based PSCs maintained their initial efficiency of 86%. This can be attributed to almost no migration of elements from the Ag-Cu alloy electrode to the perovskite layer. Our work presents a vital strategy for improving the stability of PSCs and reducing the costs associated with the back electrode in PSCs.

2.
Sci Total Environ ; 807(Pt 1): 150397, 2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-34634719

RESUMO

Light-absorbing impurities (LAIs), including black carbon (BC) and mineral dust (MD), in snow cover reduce snow albedo and accelerate the snow melting rate, thus influencing the regional water resources, ecological environmental security, and climate change. There is still a lack of quantitative assessments of the impacts of BC and MD on snowmelt in urban areas. This study was conducted from December 2018 to March 2019. A total of 120 snow samples were collected in Harbin, Northeast China to quantitatively assess the concentration characteristics of BC and MD in snow cover in different urban polluted areas and the impacts on snow albedo, radiative forcing, and snow melting. Average concentrations of BC and MD in snow cover in Harbin were 126,121.03 ng g-1 and 1419.6 µg g-1, respectively. Average concentrations of BC and MD in the industrial area were the highest, which were 4.06 and 3.13 times higher, respectively, than those in the suburban area. BC or MD decreased the average snow albedo by 0.3677 (58.49%) and 0.0583 (18.18%) with radiative forcing of 44.94 W m-2 and 7.58 W m-2, respectively. BC and MD in the industrial area, residential area, and suburban area decreased the average albedo by 0.449 (59.55%), 0.3758 (45.86%), and 0.2959 (37.65%), respectively. The impacts on snow melting time in Harbin were mainly attributed to BC, which advanced snow melting by 7.9 ±â€¯1.16 d, while MD advanced snow melting by 3.7 ±â€¯0.9 d. Under the combined effect of BC and MD, the industrial area, residential area, and suburban area in the city experienced advanced snow melting by 9.66 ±â€¯0.38 d, 7.97 ±â€¯0.31 d, and 6.67 ±â€¯0.65 d, respectively. The results can be used to assess the contribution of intense human disturbance to snow melting.


Assuntos
Monitoramento Ambiental , Neve , Carbono/análise , China , Poeira/análise , Humanos , Minerais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...