Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 29(14)2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-39064829

RESUMO

The fermentation process has a significant impact on the aromatic profile of wines, particularly in relation to the difference in fermentation matrix caused by grape varieties. This study investigates the leaching and evolution patterns of aroma compounds in Vitis vinifera L. Marselan and Merlot during an industrial-scale vinification process, including the stages of cold soak, alcohol fermentation, malolactic fermentation, and one-year bottle storage. The emphasis is on the differences between the two varieties. The results indicated that most alcohols were rapidly leached during the cold soak stage. Certain C6 alcohols, terpenes, and norisoprenoids showed faster leaching rates in 'Marselan', compared to 'Merlot'. Some branched chain fatty-acid esters, such as ethyl 3-methylbutyrate, ethyl 2-methylbutyrate, and ethyl lactate, consistently increased during the fermentation and bottling stages, with faster accumulation observed in 'Marselan'. The study combines the Orthogonal Partial Least Squares-Discriminant Analysis (OPLS-DA) model based on odor activity values to elucidate the accumulation of these ethyl esters during bottle storage, compensating for the reduction in fruity aroma resulting from decreased levels of (E)-ß-damascenone. The 'Marselan' wine exhibited a more pronounced floral aroma due to its higher level of linalool, compared to the 'Merlot' wine. The study unveils the distinctive variation patterns of aroma compounds from grapes to wine across grape varieties. This provides a theoretical framework for the precise regulation of wine aroma and flavor, and holds significant production value.


Assuntos
Fermentação , Odorantes , Vitis , Compostos Orgânicos Voláteis , Vinho , Vitis/química , Vinho/análise , Odorantes/análise , Compostos Orgânicos Voláteis/análise , Frutas/química , Álcoois/análise , Terpenos/análise , Cromatografia Gasosa-Espectrometria de Massas
2.
Plants (Basel) ; 13(11)2024 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-38891351

RESUMO

This study investigated the effect of leaf removal at three stages of grape development on the phenolic and volatile profiles of Cabernet Sauvignon and Marselan grapevines for two consecutive years in the Jieshi Mountain region, an area of eastern China with high summer rainfall. The results indicated that cluster-zone leaf removal generally reduced the titratable acidity of both varieties, but did not affect the total soluble solids of grape berries. Leaf-removal treatments increased the anthocyanin and flavonol content of berries in both varieties. However, in Cabernet Sauvignon, leaf removal negatively affected the norisoprenoid compounds, with a more pronounced impact observed when the leaf removal was conducted at an early stage. This negative effect may be related to a decrease in the levels of violaxanthin and neoxanthin, potential precursors of vitisprine and ß-damascenone. In contrast, the removal of leaves had no effect on the norisoprenoid aroma of Marselan grapes.

3.
Hortic Res ; 11(4): uhae065, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38689696

RESUMO

Terpenoids are important contributors to the aroma of grapes and wines. Grapes contain terpenoids in both volatile free form and non-volatile glycosidic form, with the latter being more abundant. Glycosylated terpenoids are deemed as latent aromatic potentials for their essential role in adding to the flowery and fruity bouquet of wines. However, the transcriptional regulatory mechanism underlying glycosylated terpenoid biosynthesis remains poorly understood. Our prior study identified an AP2/ERF transcription factor, VviERF003, through DNA pull-down screening using the promoter of terpenoid glycosyltransferase VviGT14 gene. This study demonstrated that both genes were co-expressed and synchronized with the accumulation of glycosylated monoterpenoids during grape maturation. VviERF003 can bind to the VviGT14 promoter and promote its activity according to yeast one-hybrid and dual-luciferase assays. VviERF003 upregulated VviGT14 expression in vivo, leading to increased production of glycosylated monoterpenoids based on the evidence from overexpression or RNA interference in leaves, berry skins, and calli of grapes, as well as tomato fruits. Additionally, VviERF003 and VviGT14 expressions and glycosylated monoterpenoid levels were induced by ethylene in grapes. The findings suggest that VviERF003 is ethylene-responsive and stimulates glycosylated monoterpenoid biosynthesis through upregulating VviGT14 expression.

4.
Materials (Basel) ; 17(8)2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38673226

RESUMO

The Hazelett continuous casting and rolling process represents a leading-edge production method for cold-rolled aluminum sheet and strip billets in the world. Its solidification microstructure significantly influences the quality of billets produced for cold rolling of aluminum sheets and strips. In this study, employing the CAFE (Cellular Automaton-Finite Element) method, we developed a coupled computational model to simulate the solidification microstructure in the Hazelett continuous casting process. We investigated the impact of nucleation parameters, casting temperature, and continuous casting speed on the microstructural evolution of the continuous casting billet. Through integrated metallographic analyses, we aimed to elucidate the controlling mechanisms underlying the Hazelett continuous casting process and its resultant microstructure. The results demonstrate that the equiaxed rate of grains increases with an increase in nucleation density, and the grain size decreases under constant cooling strength. With other nucleation parameters held constant, the grain size decreases as undercooling increases, and the columnar crystal zone expands. The nucleation density of the Hazelett continuous casting aluminum alloy has been determined to range between 1011 m-3 and 1013 m-3, and the undercooling ranges between 1 °C and 2.5 °C. The solidified grain structure can be controlled between 35 µm and 72 µm. The grain size of the continuous casting billet increases with an increase in pouring temperature and decreases as the casting speed increases. Elevating the pouring temperature positively impacts the fraction of high-angle grain boundaries and promotes the dendritic to equiaxed grain transition. Moreover, there exists potential for further optimization of continuous casting process parameters.

5.
Foods ; 13(3)2024 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-38338629

RESUMO

The loss of red hue in dry red wine has been a persistent issue for wine enterprises in western China. We investigated the changes in anthocyanins and non-anthocyanin phenols during the industrial-scale fermentation and one-year bottle aging of Vitis vinifera L. Merlot and Vitis vinifera L. Marselan, respectively, using the grapes in the Ningxia region. We also examined their correlation with color characterization. The study found that both anthocyanins and non-anthocyanin phenolics were rapidly extracted from grapes during alcohol fermentation. However, their concentrations decreased rapidly during malolactic fermentation. On the other hand, Vitisin A and Vitisin B were formed during alcoholic fermentation and decreased slowly from malolactic fermentation to storage period. Directly polymerized pigments (F-A and A-F), bridged polymerized pigments (A-e-F), and flavanyl-pyranoanthocyanins (A-v-F) from the reactions of anthocyanins (A) and flavan-3-ols (F), as well as pinotins were generated during the later stages of alcoholic fermentation, and remained at a high level throughout malolactic fermentation and bottle storage. Partial least squares regression and Pearson correlation analyses revealed that the red hue (a* value) of 'Merlot' and 'Marselan' wines was closely associated with monomeric anthocyanins and F-A type pigments. Furthermore, four pinotin components were positively correlated with the red hue (a* value) of 'Merlot' wine. These primary red components of the two varieties had a positive correlation with the level of flavan-3-ols. The data suggest that elevating the flavan-3-ol concentration during fermentation aids in improving the color stability of red wine.

6.
J Agric Food Chem ; 72(2): 1228-1243, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38181223

RESUMO

It is widely accepted that prevéraison application of naphthaleneacetic acid (NAA) can delay the ripening of grapes and improve their quality. However, how NAA impacts grape aroma compound concentrations remains unclear. This study incorporated the analyses of aroma metabolome, phytohormones, and transcriptome of Vitis vinifera L. cv. Cabernet Sauvignon grapes cultivated in continental arid/semiarid regions of western China. The analyses demonstrated that NAA application increased ß-damascenone and 1,1,6-trimethyl-1,2-dihydronaphthalene (TDN) in the harvested grapes by delaying véraison and upregulating VvPSY1 and VvCCD4b expressions. Additionally, NAA treatment decreased 2-isobutyl-3-methoxypyrazine (IBMP) at the same phenological stage. Notably, abscisic acid (ABA) levels increased in NAA-treated grapes during véraison, which triggered further changes in norisoprenoid metabolisms. The ABA-responsive factor VvABF2 was potentially involved in VvPSY1 positive modulation, while the auxin response factor VvARF10 may play a role in VvCCD4b upregulation and VvOMT2 downregulation during NAA induction. VvARF10 possibly acts as a crosstalk node between the ABA and auxin signaling pathways following NAA treatment in regulating aroma biosynthesis.


Assuntos
Vitis , Vinho , Ácido Abscísico/metabolismo , Vitis/genética , Vitis/metabolismo , Ácidos Indolacéticos/metabolismo , Odorantes/análise , Transcriptoma , Frutas/química , Metaboloma , Ácidos Naftalenoacéticos/análise , Vinho/análise
7.
Plant Physiol ; 193(3): 2055-2070, 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37471439

RESUMO

Norisoprenoids and flavonols are important secondary metabolites in grape berries (Vitis vinifera L.). The former is a class of ubiquitous flavor and fragrance compounds produced by the cleavage of carotenoids, and the latter, which is derived from the flavonoid metabolic pathway, has been proposed as a general quality marker for red grapes. However, the transcriptional regulatory mechanisms underlying norisoprenoid and flavonol production are still not fully understood. In this study, we characterized a transcription factor, VvWRKY70, as a repressor of both norisoprenoid and flavonol biosynthesis in grape berries, and its expression was downregulated by light and high-temperature treatment. Overexpressing VvWRKY70 in grape calli reduced norisoprenoid and flavonol production, particularly under light exposure or at high temperature, by repressing the expression of several related genes in the isoprenoid and flavonoid metabolic pathways. VvWRKY70 downregulated ß-CAROTENE HYDROXYLASE 2 (VvBCH2) and CHALCONE SYNTHASE 3 (VvCHS3) expression based on yeast 1-hybrid analysis combined with electrophoretic mobility shift assay and chromatin immunoprecipitation-quantitative PCR. We discuss the role of VvWRKY70 in the coordinated regulatory network of isoprenoid and flavonoid metabolism. These findings provide a theoretical basis to improve flavor, color, and other comprehensive qualities of fruit crops and their processing products.


Assuntos
Fatores de Transcrição , Vitis , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Vitis/genética , Vitis/metabolismo , Norisoprenoides/metabolismo , Regulação da Expressão Gênica de Plantas , Flavonoides/metabolismo , Flavonóis/metabolismo , Frutas/genética , Frutas/metabolismo
8.
Foods ; 12(14)2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37509760

RESUMO

The Bohai Bay region is a famous wine-growing area in China, where the rainfall is concentrated in the summer due to the influence of the temperate semi-humid monsoon climate. As such, the vineyard terrain has a significant impact on the flavor quality of the grapes and the resulting wines. To explore the relationship between the 'Cabernet Sauvignon' wine style and terrain, this study takes four different plots in the Jieshi Mountain region to investigate the differences in the aroma profile of Cabernet Sauvignon grapes and wines of two consecutive vintages. Based on two-way ANOVA, there were 25 free and 8 glycosylated aroma compounds in the grapes and 21 and 10 aroma compounds with an odor activity value greater than 0.1 in the wines at the end of alcohol fermentation (AF) and malolactic fermentation (MLF), respectively, that varied among the four plots. Wines from the four plots showed a significant difference in floral and fruity aroma attributes, which were mainly related to esters with high odor activity values. The difference in concentration of these compounds between plots was more pronounced in 2021 than in 2020, and a similar result was shown on the Shannon-Wiener index, which represents wine aroma diversity. It has been suggested that high rainfall makes the plot effect more pronounced. Pearson's correlation analysis indicated that concentrations of (E)-3-hexen-1-ol in grapes and ethyl 3-methylbutanoate, ethyl hexanoate, isoamyl acetate, isopentanoic acid, and phenethyl acetate in wines were strongly positively correlated with the concentrations of N, P, K, Fe, and electrical conductivity in soil but negatively correlated with soil pH. This study laid a theoretical foundation for further improving the level of vineyard management and grape and wine quality in the Jieshi Mountain region.

9.
Molecules ; 28(7)2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-37049811

RESUMO

Condensed tannins (CT) in wine are derived from the seeds and skins of grapes, and their composition and content contribute to the bitterness/astringency characteristics and ageing potential of the wine. Global warming has accelerated the ripening process of grape berries, making them out of sync with seed ripening. To understand the influence of berry ripening on the seed CT composition and content, we analyzed the changes in the soluble and insoluble CT in the seeds of 'Cabernet Sauvignon' grapes from two vineyards over two years. The results showed that the seed-soluble CT presented a slight downward trend in fluctuation during grape berry development, while the insoluble CT increased continuously before the véraison and remained at a high level afterwards. Relatively speaking, a lower sugar increment in developing grape berries favored the conversion of seed CT towards a higher degree of polymerization. The terminal unit of soluble CT was dominated by epigallocatechin gallate, the content of which decreased as the seeds matured. It is suggested that the seeds should be fully matured to reduce this bitter component in tannins. This study provides a reference for us to control the grape ripening process and produce high-quality grapes for wine making.


Assuntos
Proantocianidinas , Vitis , Vinho , Frutas/química , Taninos/análise , Sementes/química , Vinho/análise
10.
Front Plant Sci ; 14: 1142139, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36938056

RESUMO

Obtaining new grapevine varieties with unique aromas has been a long-standing goal of breeders. Norisoprenoids are of particular interest to wine producers and researchers, as these compounds are responsible for the important varietal aromas in wine, characterized by a complex floral and fruity smell, and are likely present in all grape varieties. However, the single-nucleotide polymorphism (SNP) loci and candidate genes genetically controlling the norisoprenoid content in grape berry remain unknown. To this end, in this study, we investigated 13 norisoprenoid traits across two years in an F1 population consisting of 149 individuals from a hybrid of Vitis vinifera L. cv. Muscat Alexandria and V. vinifera L. cv. Christmas Rose. Based on 568,953 SNP markers, genome-wide association analysis revealed that 27 candidate SNP loci belonging to 18 genes were significantly associated with the concentrations of norisoprenoid components in grape berry. Among them, 13 SNPs were confirmed in a grapevine germplasm population comprising 97 varieties, including two non-synonymous mutations SNPs within the VvDXS1 and VvGGPPS genes, respectively in the isoprenoid metabolic pathway. Genotype analysis showed that the grapevine individuals with the heterozygous genotype C/T at chr5:2987350 of VvGGPPS accumulated higher average levels of 6-methyl-5-hepten-2-one and ß-cyclocitral than those with the homozygous genotype C/C. Furthermore, VvGGPPS was highly expressed in individuals with high norisoprenoids concentrations. Transient overexpression of VvGGPPS in the leaves of Vitis quinquangularis and tobacco resulted in an increase in norisoprenoid concentrations. These findings indicate the importance of VvGGPPS in the genetic control of norisoprenoids in grape berries, serving as a potential molecular breeding target for aroma.

11.
Food Chem ; 403: 134341, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36156399

RESUMO

The objective of this study was to investigate the effect of modified carbonic maceration technique (MCM) on the chemical and sensory characteristics of 'Cabernet Sauvignon' wines at an industrial production scale. Wines made from MCM and cold maceration technique (COM, control) were analyzed chemically and sensorially. Wines made by MCM demonstrated higher L* and a* values but lower b* values, and higher anthocyanin concentrations, which indicated that MCM wines had a greater color intensity, more reddish and bluish hues compared to COM wines. MCM wines contained more flavonols but lower flavan-3-ols. MCM treatment reduced the concentration of C6 alcohols and some higher alcohols, and increased the concentration of esters, especially acetates. Moreover, sensory evaluation showed the MCM treatment increased the overall aroma intensity, due to the increase of black fruit and fresh fruit notes and the decrease of green note. In addition, MCM wines had lower astringency and persistence.


Assuntos
Vitis , Odorantes/análise , Frutas , Antocianinas , Polifenóis , Carbono
12.
Foods ; 11(9)2022 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-35563903

RESUMO

During the storage of wines in bottles, especially white wines, tartrate crystallization often occurs, which reduces the commercial value of the wines and therefore needs to be avoided by performing cold stabilization treatments before bottling. However, whether different cold treatment durations impact the quality of a wine's aroma has not yet been of special concern. This research was conducted at an industrial scale to explore how cold treatments at -5.3 °C for 10 to 15 days impact the organic acids, aroma compounds, and sensory quality of Riesling dry white wines, and the variation was documented at the end of treatment, and at 6 and 12 months of bottle storage. The results showed that cold treatments significantly reduced tartaric acid concentrations and significantly affected the concentrations of most aroma components in the wines only after 12 months of bottle storage, including the main components of esters, norisoprenoids, terpenoids, and furfural. Moreover, the concentrations of some components showed an increasing trend with the bottle storage, especially 1,1,6-trimethyl-1,2-dihydronaphthalene (TDN), the characteristic volatile of Riesling wine, suggesting that an acidic condition resulting from cold treatment might facilitate the conversion of some aroma precursors into volatiles. In conclusion, cold stabilization treatments, within limits, can improve tartaric acid stability and could promote the conservation of aroma compounds during bottle storage without adversely affecting the aroma profile of the wines.

13.
Food Chem ; 377: 131961, 2022 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-34990947

RESUMO

Pre-fermentative polyphenol supplementation in industrial scales (100-hL) and simulated fermentation (350 mL clarified juice) were conducted. Results showed that in practical winemaking, adding QCE (quercetin, caffeic acid and ellagic acid) increased acetate concentrations in wines and extra grape seed tannins (T) enhanced the effect of QCE supplementation. In simulated fermentation with clarified juice, the synergy effect of QCE and T was evidenced that ester formation was only promoted through mixed QCET supplementation. Besides, QCE supplementation benefited the formation of 4-vinylcatechol adducted malvidin-3-O-(acetyl/coumaroyl)-glucoside and decreased other anthocyanin derivatives derived from pyruvic acid and acetaldehyde, leading more pyruvic acid and acetaldehyde left in yeast to enhance the metabolic fluxes of esters. Findings manifested the connection between the formation of esters and anthocyanin derivatives during red wine alcoholic fermentation, which would be influenced by the phenolic matrix. This work could provide a perspective in winemaking industry for modulating aroma profile via polyphenol supplementation.


Assuntos
Vitis , Vinho , Suplementos Nutricionais , Ésteres , Fermentação , Polifenóis/análise , Saccharomyces cerevisiae , Vinho/análise
14.
J Sci Food Agric ; 102(5): 1862-1871, 2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-34468988

RESUMO

BACKGROUND: The Xinjiang Uygur Autonomous Region is an arid and semi-arid region with low rainfall and strong sunlight; thus, grape berries in this region accumulate sugar content rapidly, and the ripening process is shorter than that in other regions. Although previous studies illustrated that altered sunlight conditions could influence the aroma profiles of grape berries, less attention has been paid to the effect of vine top shading on volatile compounds under a dry-hot climate. RESULT: We focused on the effects of vine top shading on the concentrations of linolenic and linoleic acids, as well as their metabolites, the C6/C9 compounds, in grape berries. Four vine top shading treatments at veraison (ripening onset) and post-veraison (skin full coloration) were performed by reducing solar exposure to the grapevines by 20% and 50% respectively. Apart from (E)-2-hexenal in the 20% shading treatment of 2016, (E)-2-hexenal were not promoted by the 50% shading and 20% shading treatments during veraison to harvest in both of the vintages. By contrast, the influence of vine top shading from post-veraison till harvest was different between the two vintages; these C6 compounds were decreased in both of the shading treatments in 2016, whereas most of them were promoted in 2017, possibly related to daily sunshine hours in this period. In addition, the C9 compound nonanal with very low concentration exhibits a significant difference among various treatments by two-factor analysis of variance. As for linolenic acid and linoleic acid, two types of C6 compound biosynthetic precursors, four shading treatments all reduced their concentration, except for linolenic acid in the 50% shading treatment of 2016. Moreover, it appeared to have no apparent correlation between the variations of two precursors and their volatile metabolites, indicating that there is a complex impact of vine shading on C6 compound biosynthesis. CONCLUSION: Vine top shading at veraison can reduce the accumulation of some C6 compounds in grape berries, but no consistent consequence was attained for the vine shading at pre-veraison. The findings indicate the significance of grapevine solar exposure management at veraison in controlling the level of C6 compounds in a dry-hot region like Xinjiang. © 2021 Society of Chemical Industry.


Assuntos
Frutas , Vitis , Vinho , China , Frutas/química , Luz Solar , Vitis/química , Vinho/análise
15.
Front Plant Sci ; 12: 694979, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34249067

RESUMO

Glycosidic aroma compounds are the important precursors of volatile aroma in grapes, and they can be added with odorous aglycones via enzyme- or acid-catalyzed hydrolysis during wine fermentation and storage. Developing an analytical method for intact glycosides can provide the possibility to study the accumulation of these aroma precursors in grape berries. For this purpose, a Tandem Mass Spectrometry (MS/MS). database based on ultra-high-performance liquid chromatography quadrupole-time-of-flight mass spectrometry was built, covering multiple aglycone classes. Subsequently, the profiles of glycosidic aroma compounds in Vitis vinifera L. cv. Muscat Blanc, Riesling, and Chardonnay berries during maturation were investigated. Pentosyl-hexosides were the most abundant glycosides in all three varieties. Both composition and concentration of glycosidic aroma compounds varied obviously among grape varieties. Except for monoterpenol pentosyl-hexosides, most glycosides were kept almost stable in their concentrations during berry maturation. This research provides an approach to understand the variation of glycosidic aroma components from the perspective of aglycones and glycosides.

16.
Food Res Int ; 143: 110306, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33992326

RESUMO

Sunlight conditions around grape clusters vary with their positions, and can have a significant effect on grape berry compounds. This study investigated the influence of cluster positions in the canopy (interior and two exterior canopy sides) and vineyard row orientation (north-south and east-west) on flavonoid and volatile compound profiles of Vitis vinifera L. cvs 'Cabernet franc' (CF) and 'Chardonnay' (CH) berries in two consecutive years. The experimental vineyard was located in Jiaodong Peninsula of China, which is characterized by a temperate monsoon-type climate and relatively short sunlight duration. Clusters located in the interior of the canopy received less sunlight irradiation than the exterior positions, and the average temperature around clusters located in different positions differed slightly. The results showed that over two years, the positions of clusters in the canopy had no consistent impact on cluster weight, berry weight, juice total soluble solids or titratable acidity for either cultivar. For both cultivars, the interior clusters had lower total flavonol concentrations than the exterior clusters, while the position of clusters in the canopy had no major impacts on the composition of anthocyanins and flavan-3-ols. The volatile compounds were somewhat influenced by the positions of clusters in the canopy, while some bound norisoprenoids and terpenoids had lower levels in interior clusters than in exterior clusters. These results will help winegrowers make decisions regarding harvest strategies.


Assuntos
Vitis , Antocianinas , China , Flavonoides , Frutas
17.
Int J Mol Sci ; 22(3)2021 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-33572582

RESUMO

The abscisic acid (ABA) increase and auxin decline are both indicators of ripening initiation in grape berry, and norisoprenoid accumulation also starts at around the onset of ripening. However, the relationship between ABA, auxin, and norisoprenoids remains largely unknown, especially at the transcriptome level. To investigate the transcriptional and posttranscriptional regulation of the ABA and synthetic auxin 1-naphthaleneacetic acid (NAA) on norisoprenoid production, we performed time-series GC-MS and RNA-seq analyses on Vitis vinifera L. cv. Cabernet Sauvignon grape berries from pre-veraison to ripening. Higher levels of free norisoprenoids were found in ABA-treated mature berries in two consecutive seasons, and both free and total norisoprenoids were significantly increased by NAA in one season. The expression pattern of known norisoprenoid-associated genes in all samples and the up-regulation of specific alternative splicing isoforms of VviDXS and VviCRTISO in NAA-treated berries were predicted to contribute to the norisoprenoid accumulation in ABA and NAA-treated berries. Combined weighted gene co-expression network analysis (WGCNA) and DNA affinity purification sequencing (DAP-seq) analysis suggested that VviGATA26, and the previously identified switch genes of myb RADIALIS (VIT_207s0005g02730) and MAD-box (VIT_213s0158g00100) could be potential regulators of norisoprenoid accumulation. The positive effects of ABA on free norisoprenoids and NAA on total norisoprenoid accumulation were revealed in the commercially ripening berries. Since the endogenous ABA and auxin are sensitive to environmental factors, this finding provides new insights to develop viticultural practices for managing norisoprenoids in vineyards in response to changing climates.


Assuntos
Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Metaboloma/efeitos dos fármacos , Norisoprenoides/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Transcriptoma/efeitos dos fármacos , Vitis/genética , Ácido Abscísico/metabolismo , Processamento Alternativo , Frutas/genética , Frutas/crescimento & desenvolvimento , Frutas/metabolismo , Perfilação da Expressão Gênica , Ácidos Indolacéticos/metabolismo , Metabolômica , Ácidos Naftalenoacéticos/metabolismo , Vitis/crescimento & desenvolvimento , Vitis/metabolismo
18.
J Mater Eng Perform ; 30(1): 423-433, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33250626

RESUMO

This paper reports the effect of post-heat treatment (PHT) on laser-deposited WxC + Ni-based composite thin walls. The PHT at 700, 800, and 900 °C was conducted to modify the microstructure and mechanical properties of the composite. The results showed that the as-deposited composite had a weak flexural strength and plasticity due to the brittle nature of the eutectic phase. The eutectic phase consisted of M7C3, M2C, and a small amount of the γ phase. However, after PHT at a certain temperature (e.g., 700 or 800 °C), the eutectic phase gradually disappeared, and carbides, such as M7C3 and M2C, tended to be distributed uniformly in the γ matrix, which improved the flexural strength of the composite. Nevertheless, after the PHT at 900 °C, the flexural strength of the composite displayed a downward trend, which was mainly because of the severe softening of the γ phase. In addition, the plasticity of this composite continuously improved as the eutectic phase disappeared and the γ phase softened. Based on the above results, we proposed a PHT at 800 °C for 1 h as an optimal process for this WxC + Ni-based composite.

19.
Food Res Int ; 134: 109226, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32517914

RESUMO

Anthocyanin derivatives are critical components that impart color to aging red wine. In this study, we developed a targeted metabolomic method for the simultaneously profiling of the primary thirty-seven malvidin-derived anthocyanin derivatives in red wine, including various pyranoanthocyanins and flavanols-related condensation products. First, high-performance liquid chromatography (HPLC) tandem ion trap and triple-quadrupole (QqQ) mass spectrometry were used to construct the mass spectral and chromatographic database of the anthocyanin derivatives that were formed in a model wine solution. Next, the targeted profiling analysis of these compounds was achieved on a QqQ mass spectrometer in the multiple reaction monitoring mode (MRM). The method displayed excellent linearity (R2 0.9391-0.9998), sensitivity (0.221-0.604 µg/L of limit of detection (LOD) and 0.274-1.157 µg/L of limit of quantification (LOQ) equivalent to malvidin-3-O-glucoside (Mv-glc)), and repeatability (less than 10% and 15% for intra-day and inter-day relative standard deviation (RSD) respectively). Partial least squares discriminant analysis (PLS-DA) based on this method showed great discrimination over different vintage wines, thereby promising to be an effective tool in wine anthocyanin and aging related study.


Assuntos
Antocianinas/química , Cromatografia Líquida/métodos , Metabolômica/métodos , Espectrometria de Massas em Tandem/métodos , Vinho/análise , Animais , Vinho/classificação
20.
Genes (Basel) ; 11(5)2020 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-32365554

RESUMO

Glycosylated volatile precursors are important, particularly in wine grape berries, as they contribute to the final aroma in wines by releasing volatile aglycones during yeast fermentation and wine storage. Previous study demonstrated that VviGT14 was functioned as a critical monoterpene glucosyltransferase in grape berry, while the transcriptional regulation mechanism of VviGT14 was still unknown. Here we identified VviWRKY40 as a binding factor of VviGT14 promoter by both DNA pull-down and yeast one-hybrid screening, followed by a series of in vitro verification. VviWRKY40 expression pattern negatively correlated with that of VviGT14 in grape berries. And the suppressor role of VviWRKY40 was further confirmed by using the dual luciferase assay with Arabidopsis protoplast and grape cell suspension system. Furthermore, the grape suspension cell ABA treatment study showed that ABA downregulated VviWRKY40 transcript level but promoted that of VviGT14, indicating that VviWRKY40 was at the downstream of ABA signal transduction network to regulate monoterpenoid glycosylation. These data extend our knowledge of transcriptional regulation of VviGT14, and provide new targets for grape breeding to alter monoterpenoid composition.


Assuntos
Frutas/genética , Monoterpenos/metabolismo , Odorantes/análise , Vitis/genética , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas/genética , Glicosilação , Análise de Sequência com Séries de Oligonucleotídeos , Fatores de Transcrição/genética , Vinho
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...