Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ISA Trans ; 127: 188-196, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35277265

RESUMO

This paper is concerned with the cross-dimensional formation control of a second-order multi-dimensional heterogeneous multi-agent system. Agents are first separated into several groups according to their position/velocity vector dimensions. Then the cross-dimensional formation control problem is formulated such that agents in the same group form a time-varying formation in their own dimension and agents in different groups cooperatively move in multiple dimensions. This can make follower agents in different dimensions cooperatively track a leader. Moreover, a cross-dimensional formation protocol is designed based on full or partial information of neighboring agents. For higher-dimensional agents, full information of lower-dimensional neighbors is adopted. For lower-dimensional ones, only partial information of higher-dimensional neighbors is used. Furthermore, a necessary and sufficient condition for the second-order heterogeneous multi-agent system to achieve cross-dimensional formation is provided. Accordingly, a criterion for designing cross-dimensional formation protocol is further derived. Finally, under an undirected graph, a lower-dimensional protocol design criterion is obtained if there is no data exchange between lower- and higher-dimensional followers. The effectiveness of the obtained results is demonstrated through cross-dimensional target enclosing performance analysis for multiple robots and quadrotors.

2.
IEEE Trans Cybern ; 52(7): 5999-6012, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33373315

RESUMO

This article addresses a novel scheduling problem, a distributed flowshop group scheduling problem, which has important applications in modern manufacturing systems. The problem considers how to arrange a variety of jobs subject to group constraints at a number of identical manufacturing cellulars, each one with a flowshop structure, with the objective of minimizing makespan. We explore the problem-specific knowledge and present a mixed-integer linear programming model, a counterintuitive paradox, and two suites of accelerations to save computational efforts. Due to the complexity of the problem, we consider a decomposition strategy and propose a cooperative co-evolutionary algorithm (CCEA) with a novel collaboration model and a reinitialization scheme. A comprehensive and thorough computational and statistical campaign is carried out. The results show that the proposed collaboration model and reinitialization scheme are very effective. The proposed CCEA outperforms a number of metaheuristics adapted from closely related scheduling problems in the literature by a significantly considerable margin.

3.
IEEE Trans Cybern ; 50(6): 2425-2439, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31603832

RESUMO

In this article, we propose a hybrid artificial bee colony (ABC) algorithm to solve a parallel batching distributed flow-shop problem (DFSP) with deteriorating jobs. In the considered problem, there are two stages as follows: 1) in the first stage, a DFSP is studied and 2) after the first stage has been completed, each job is transferred and assembled in the second stage, where the parallel batching constraint is investigated. In the two stages, the deteriorating job constraint is considered. In the proposed algorithm, first, two types of problem-specific heuristics are proposed, namely, the batch assignment and the right-shifting heuristics, which can substantially improve the makespan. Next, the encoding and decoding approaches are developed according to the problem constraints and objectives. Five types of local search operators are designed for the distributed flow shop and parallel batching stages. In addition, a novel scout bee heuristic that considers the useful information that is collected by the global and local best solutions is investigated, which can enhance searching performance. Finally, based on several well-known benchmarks and realistic industrial instances and via comprehensive computational comparison and statistical analysis, the highly effective performance of the proposed algorithm is favorably compared against several algorithms in terms of both solution quality and population diversity.


Assuntos
Algoritmos , Inteligência Artificial , Modelos Biológicos , Animais , Abelhas , Fatores de Tempo
4.
IEEE Trans Cybern ; 46(6): 1311-24, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26126292

RESUMO

In this paper, we propose an improved discrete artificial bee colony (DABC) algorithm to solve the hybrid flexible flowshop scheduling problem with dynamic operation skipping features in molten iron systems. First, each solution is represented by a two-vector-based solution representation, and a dynamic encoding mechanism is developed. Second, a flexible decoding strategy is designed. Next, a right-shift strategy considering the problem characteristics is developed, which can clearly improve the solution quality. In addition, several skipping and scheduling neighborhood structures are presented to balance the exploration and exploitation ability. Finally, an enhanced local search is embedded in the proposed algorithm to further improve the exploitation ability. The proposed algorithm is tested on sets of the instances that are generated based on the realistic production. Through comprehensive computational comparisons and statistical analysis, the highly effective performance of the proposed DABC algorithm is favorably compared against several presented algorithms, both in solution quality and efficiency.

5.
ScientificWorldJournal ; 2014: 596850, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24883414

RESUMO

A hybrid algorithm which combines particle swarm optimization (PSO) and iterated local search (ILS) is proposed for solving the hybrid flowshop scheduling (HFS) problem with preventive maintenance (PM) activities. In the proposed algorithm, different crossover operators and mutation operators are investigated. In addition, an efficient multiple insert mutation operator is developed for enhancing the searching ability of the algorithm. Furthermore, an ILS-based local search procedure is embedded in the algorithm to improve the exploitation ability of the proposed algorithm. The detailed experimental parameter for the canonical PSO is tuning. The proposed algorithm is tested on the variation of 77 Carlier and Néron's benchmark problems. Detailed comparisons with the present efficient algorithms, including hGA, ILS, PSO, and IG, verify the efficiency and effectiveness of the proposed algorithm.


Assuntos
Algoritmos , Alocação de Recursos/métodos , Simulação por Computador , Eficiência Organizacional , Modelos Teóricos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...