Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Technol Health Care ; 32(1): 163-179, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37092194

RESUMO

BACKGROUND: Jingshen Xiaoke decoction (JS) was prepared by studying the classic prescriptions of famous scholars in the past dynasties to prevent and treat diabetes. The related mechanism of JS against hyperlipidemia has yet to be revealed. OBJECTIVE: To investigate the mechanism of action of JS in treating diabetes mellitus by using bioinformatics methods. METHODS: A database was used to search the active ingredients and targets of the JS and targets for type 2 diabetes mellitus (T2DM). The protein interaction between the intersection targets, and the constructed the PPI network diagram was analyzed using the STRING database. Furthermore, the gene annotation tool DAVID was used to enrich the intersecting targets for the Gene ontology (GO) function and Kyoto encyclopedia of genes and genomes (KEGG) signaling pathway. Finally, Maestro software was used for molecular docking to verify the binding ability of the active ingredients to the core target genes. RESULTS: A total of 45 active ingredients in JS were screened out corresponding to 239 effective targets, of which 64 targets were potential targets for treating T2DM. The analysis of PPI network diagram analysis revealed that the ingredients' active components are quercetin, ß-sitosterol, stigmasterol, luteolin, and 7-Methoxy-2-methyl isoflavone. GO functional enrichment analysis indicated 186 biological processes (BP), 23 molecular functions (MF) and 13 cellular components (CC). KEGG pathway enrichment analysis revealed the enrichment of 59 signal pathways. The molecular docking results demonstrated that the active ingredients and core targets had a good docking affinity with a binding activity less than -7 kcal/mol. Finally, the western blotting illustrated that JS could up-regulate the liver PI3K/AKT-signaling pathway. CONCLUSION: JS can regulate glucolipid metabolism, reduce the inflammatory response, improve insulin resistance and modulate the immune response through PI3K/AKT signaling pathway treating of T2DM and its complications effects.


Assuntos
Diabetes Mellitus Tipo 2 , Animais , Camundongos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Simulação de Acoplamento Molecular , Farmacologia em Rede , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt
2.
Environ Sci Pollut Res Int ; 30(54): 115600-115610, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37884721

RESUMO

The present work aims to study the efficiency of root exudates of Sudan grass on the degradation of organochlorine pesticides (OCPs) and the consequent impact on the microbial and ecological characteristics of the soil, including population composition, quantity dynamics, and community structure. Pot experiments were carried out to study the effect of root exudates on the degradation of OCPs at initial concentrations ranging from 66.67 to 343.61 mg/kg. In addition, the influence of root exudates on the rhizosphere microbial growth and their community structure was studied by monitoring the microbial biomass carbon, microbial biomass nitrogen, and phospholipid fatty acids (PLFAs) in the soils. In the range of OCP content (66.67 ~ 343.61 mg/kg), the soil-microbial system mediated by root exudates significantly promoted the removal of OCP pollutants. The removal rate of OCPs in the rhizosphere soil (TR2) was as high as 79.32%, 36.86% higher than that in the OCP-contaminated group (TR1) and 60.63% higher than that in the sterilized treatment group (CK). Under the same treatment conditions (pollution level and additive dose), the enhanced removal rate of HCHs, toxaphene, HCB, aldrin, and γ-chlordane by root exudates was much higher than the total amount of OCPs, while the extent of enhanced dissipation of DDTs, mirex, endosulfanI, dieldrin, and heptachlor epoxide was always lower than that in the corresponding soils. During the experiment, the phospholipid fatty acid content of bacteria was dominant, followed by that of fungi, and their variation trend was consistent with the degradation characteristics of OCPs in soil. Root exudates of Sudan grass might change the rhizosphere bacterial and fungal community structure during the process of phytoremediation, leading to enhanced OCP degradation.


Assuntos
Hidrocarbonetos Clorados , Microbiota , Praguicidas , Poluentes do Solo , Sorghum , Solo/química , Rizosfera , Biodegradação Ambiental , Sorghum/metabolismo , Poluentes do Solo/análise , Praguicidas/análise , Hidrocarbonetos Clorados/análise , Exsudatos e Transudatos/química , Exsudatos e Transudatos/metabolismo , Fosfolipídeos , Microbiologia do Solo
3.
Environ Monit Assess ; 195(11): 1274, 2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37801194

RESUMO

To investigate the removal of organochlorine pesticide residues by immobilized degrading microbe, indigenous microorganisms from organochlorine pesticide (OCP)-contaminated soils in Chengdu plain, pot experiments were carried out to evaluate the potential of the immobilized complex microbial specific degrading microbe treated with sodium alginate (SA) composite carrier in decontaminating OCP-contaminated soils, and field experiments were also conducted to investigate the enhanced efficiency of immobilized microbial agents on the dissipation of OCPs in the contaminated plots for different cultivation usage. The results showed that the dissipation rate of OCPs in contaminated soils with initial concentrations of 122.24 µg/kg was 89.94% after the addition of 25 mg of immobilized microbial agents at the end of the 90 days of experiment, which was 6.1% higher than that of the compound microbial agents under the same environmental conditions, and the control group without the addition of microbial agents was only 1.18%, while the concentration of OCPs in contaminated soils with initial concentrations of 203.64 µg/kg only decreased to 65.29 µg/kg after the addition of 20 mg of compound microbial agents. In contrast, the soil concentration of immobilized microbial agent treatment group under the same conditions decreased to 52.15 µg/kg. During the field experiment, the enhanced efficiency of immobilized microbial agents on the degradation of OCPs in different cultivation usage was evidently different, showed that the concentration of OCPs in paddy fields (18.60%) > tea gardens (12.17%) ≥ orchards (11.41%) > vegetable fields (6.21%) ≥ dryland (4.79%), which was especially significant in stress environment. Overall, the immobilization treatment obviously improved the degradation potential of OCPs-specific degrading microbe, and the degree of improvement was related to the metabolic activity of the degrading microbe, the addition amount, remediation time, and habitat conditions.


Assuntos
Hidrocarbonetos Clorados , Resíduos de Praguicidas , Praguicidas , Poluentes do Solo , Resíduos de Praguicidas/análise , Solo/química , Monitoramento Ambiental/métodos , Agricultura , Praguicidas/análise , Hidrocarbonetos Clorados/análise , Poluentes do Solo/análise
4.
Bioresour Technol ; 362: 127850, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36031130

RESUMO

This study aimed to reveal the membrane fouling mechanisms during anaerobic membrane bioreactor (AnMBR) operation for swine wastewater treatment under different organic loading rates (OLR). Results showed that AnMBR could achieve high pollutant removal (71.9-83.6 %) and energy recovery (0.18-0.23 L-CH4/g-COD) at an OLR range of 0.25-0.5 g-COD/g-VSS.d, realizing energy production. However, higher OLR would aggravate the membrane fouling due to accumulation of fine sludge particles, organic foulants, and extracellular polymeric substances (EPS) on cake layer. Based on the high-throughput sequencing, microbial communities significantly changed and fouling-causing bacteria (e.g. Pseudomonas, Methanosarcina and Methanothrix) enriched in the cake layer at higher OLR conditions, leading to lower membrane permeability. Backwash can effectively remove the cake layer from the membrane surface and recover membrane permeability. The present study provides important information about membrane fouling and microbial information that could have significant impact on large-scale AnMBR application.


Assuntos
Microbiota , Águas Residuárias , Anaerobiose , Animais , Reatores Biológicos , Membranas Artificiais , Esgotos , Suínos , Eliminação de Resíduos Líquidos
5.
Bioresour Technol ; 345: 126470, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34863846

RESUMO

The present study introduced a new method for enhanced biomethane production and pollution control of swine wastewater (SW) using anaerobic membrane bioreactor (AnMBR). Results confirmed 35 °C as the optimum temperature for enhanced anaerobic digestion which resulted in relatively higher methane production rate and potential. In AnMBR system, robust pollutants removal and conversion rate were achieved under various hydraulic retention time (HRT) ranging from 20 to 10 days, while the highest methane yield (0.24 L/g-CODremoved) and microbial activity (6.65 mg-COD/g-VSS·h) were recorded at HRT of 15 days. Reduction of HRT to 10 days resulted in serious membrane fouling due to accumulation of extracellularpolymericsubstances(EPS) and cake layer on the membrane. However, cake layer as the dominant membrane foulant could be effectively removed through periodic physical backwash to recover the membrane permeability. Overall, the suggested AnMBR is a promising technology to enhance SW treatment and energy recovery.


Assuntos
Gado , Purificação da Água , Anaerobiose , Animais , Reatores Biológicos , Membranas Artificiais , Metano , Suínos , Eliminação de Resíduos Líquidos , Águas Residuárias
6.
Front Endocrinol (Lausanne) ; 13: 1068555, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36589810

RESUMO

Objective: Codonopsis Radix and Polygonati Rhizoma (CRPR) has a good hypoglycemic effect. The aims of the present study were to investigate the effect of CRPR on high-fat/high-sugar diet (HFHSD)- and streptozotocin (STZ)-induced type 2 diabetes mellitus (T2DM) mice as well as to investigate the involved mechanism. Methods: A T2DM mouse model was generated by combining HFHSD and STZ. After the model was established, normal and model groups received the same volume of normal saline intragastrically, and the negative control group was treated with metformin (200 mg/kg·BW). The low, medium, and high CRPR groups received four consecutive weeks of oral gavage with CRPR doses of 2.5, 5, and 10 g/kg·BW, respectively, during the course of the study. Body weight and fasting blood glucose (FBG) were measured on a weekly basis. Enzyme-linked immunosorbent assay (ELISAs) were used to evaluate the serum and liver samples. Hematoxylin and eosin (H&E) staining was utilized to observe the pathological status of the liver and pancreas. Western blot (WB) analysis was performed to evaluate the protein expression levels of PI3K, p-PI3K, AKT, and p-AKT. Results: Compared to model mice, each treatment group had significantly elevated levels of FBG, total cholesterol (TC), and triacylglycerol (TG) (P<0.01 and P<0.05, respectively). The levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were significantly reduced in the treatment groups compared to the model group (P<0.01). Compared to the model group, fasting insulin (FINS) levels were elevated in all groups of CRPR (P<0.05), and there were significantly higher levels of high-density lipoprotein cholesterol (HDL-C) in both the low-dose and high-dose CRPR groups (P<0.05). H&E staining indicated that CRPR treatment reduced organ enlargement, improved liver lipid accumulation, and repaired islet injury in T2DM mice. Moreover, WB analysis demonstrated that all CRPR groups significantly upregulated the protein expression of IRS1, p-GSK3ß, PI3K, p-Akt and p-FOXO1(P<0.05) as well as significantly downregulated p-IRS1 and FOXO1 protein expression (P<0.05). Conclusion: The present study demonstrated that CRPR effectively improves the metabolic disturbance of lipids, repairs damaged liver tissues, repairs damaged pancreatic tissues, and reduces insulin resistance (IR) in T2DM mice. The mechanism of action may be associated with upregulation of the IRS1/PI3K/AKT signaling pathway and inhibition of IRS1 phosphorylation.


Assuntos
Codonopsis , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Camundongos , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Codonopsis/metabolismo , Glicemia/metabolismo , Diabetes Mellitus Experimental/metabolismo , Transdução de Sinais , Colesterol/efeitos adversos
7.
Environ Sci Pollut Res Int ; 26(33): 34645-34657, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31654302

RESUMO

Fermentation slurry from food waste (FSFW) produced at different temperatures (20, 37, and 55 °C) was utilized as external carbon source for promoting nitrogen removal in this study. It was found that high temperatures improved the hydrolysis rate by promoting the hydrolytic enzyme activity. Mesophilic temperature (37 °C) was favorable for organic acid (especially lactic acid) production by selectively enriching the Lactobacillus (with a relative abundance of 90.6%), while thermophilic temperature (55 °C) would restrict the acidogenesis rate (18.9%) and result in the accumulation of carbohydrate in the fermented slurry. Organic acids in the FSFW act as easily biodegradable carbon sources, but the macromolecular and particulate organic components can be utilized as slowly biodegradable carbon sources in the denitrification processes. Using the FSFW as carbon sources to enhance nitrogen removal from wastewater in sequencing batch reactors (SBRs) for more than 150 days, the FSFW produced at thermophilic temperature could significantly promote the microbial metabolic capacity of the activated sludge and improve the nitrogen and phosphate removal efficiencies.


Assuntos
Nitrogênio/análise , Eliminação de Resíduos Líquidos/métodos , Reatores Biológicos , Carbono/metabolismo , Desnitrificação , Fermentação , Alimentos , Hidrólise , Nitrogênio/metabolismo , Compostos Orgânicos , Fosfatos , Eliminação de Resíduos , Esgotos , Temperatura , Águas Residuárias/química
8.
Bioresour Technol ; 294: 122218, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31606600

RESUMO

Fermentation slurry from food waste (FSFW) generated by acidogenic fermentation at mesophilic temperature was utilized to improve the nutrients removal from wastewater. Organic acids (such as lactate and volatile fatty acids) in the FSFW behaved as readily biodegradable carbon sources, while the particulate and macromolecular organics acted as slowly biodegradable carbon sources during denitrification processes. The FSFW dosage significantly influenced the nitrogen removal performance, and a C/N ratio (in terms of chemical oxygen demand to nitrogen ratio) of 8 could achieve complete denitrification in the batch tests. In a sequencing batch reactor (SBR) using FSFW for long-term wastewater treatment, extracellular polymeric substances (EPS) gradually accumulated, sludge particle size significantly increased, and microbial communities were selectively enriched, which contributed to promoting the nitrogen (>80%) and phosphate (90.1%) removal efficiencies. Overall, the FSFW produced by acidogenic fermentation under mesophilic temperature served as an excellent intermediary between FW valorization and wastewater treatment.


Assuntos
Eliminação de Resíduos , Águas Residuárias , Reatores Biológicos , Carbono , Desnitrificação , Fermentação , Alimentos , Nitrogênio , Nutrientes , Esgotos , Eliminação de Resíduos Líquidos
9.
Huan Jing Ke Xue ; 37(6): 2368-2375, 2016 Jun 08.
Artigo em Chinês | MEDLINE | ID: mdl-29964909

RESUMO

Phytoremediation is an important measure to remove organic pollutants from contaminated soil, and the root secretion of plant is considered to be closely related to the mechanisms of phytoremediation of organic pollutants. It is in favor of revealing the mechanisms of remediation by studying the characteristics of root exudates of plants with phytoremediation potential under the stress of pollutants. In the present research, pyrene and five species of Festuca which have been testified to be tolerant to pyrene stress were selected as studied objects. A soil-cultivating experiment with rhizobag technique was conducted to investigate the effects of pyrene on low molecule weight organic compounds in the root exudates of plant species under five concentration levels of pyrene (10.19, 20.32, 40.36, 79.94,and 160.68 mg·kg-1,denoted by C1, C2, C3, C4 and C5,respectively) on day 30, 40, 50, 60 and 70 of experiments. The results showed that the presence of vegetation significantly enhanced the dissipation of pyrene in the soil environment. This effect was especially marked with Festuca arundinacea, followed by those with Festuca mazzetiana, Festuca pubiglumis, and Festuca longiglumis, and that with Festuca stapfii was the lowest. During the whole experiments, the amounts of soluble sugar excreted by the five species of Festuca tested in root exudates were promoted with pyrene stress, then fluctuated with a stable trend along with the increase of stress concentration or the extension of stress period, which appeared to rise appreciably at relative low pyrene spiked (C1-C3) or earlier stress stage (30-40 d) and reduce at relative high pyrene spiked level (C3-C5) or later stress stage (40-70 d), and the highest amount of soluble sugars in root exudates occurred on day 50 of experiments with 40.36 mg·kg-1 pyrene treatment. The greater the phytoremediation potential of the plant species tested, the more obvious this trend wads. Compared with the control treatment (CK), pyrene stress promoted the root system of all five species of Festuca tested to release more low molecular weight organic acids, the stronger the restoration potential of plant species, the higher the concentration of pyrene stress under which the amount of organic acids in root exudates was increased to the peak value. Among the five species of Festuca tested, oxlic acid, acetic acid, lactic acid and malic acid were the main components of organic acids in root exudates, with a percentage of greater than 98.15% in all pyrene stress treatments, but there were traces of fumaric acid in the roots secretion of plant species with the stronger restoration potential. Data also indicated that 19 types of amino acids were found in root exudates of Festuca and the composition of amino acids in root exudates of Festuca was stable under all pyrene stress treatments, but the amino acid amount was different in root exudates under pyrene stress. The amount of all amino acids in those root exudates increased with increasing pyrene concentration, especially, the amount of threonine, serine, glycine, and alanine increased significantly among the 19 types of amino acids and the differences were significant among different treatments with different pyrene concentrations (P<0.05). However, proline, hydroxy proline and aspartic acid were always released in the form of functional group as a response to the pyrene stress, their contents soared quickly with the increase of stress concentration in soils, and the difference was significant among different treatments with different pyrene concentrations (P<0.05); the more the components of functional group participated in stress response, the stronger the restoration potential of plant species. These results indicated secretion characteristics of soluble sugar, low molecular weight organic acids and amino acids in the root system were closely related to their phytoremediation potential under the pyrene stress, the greater the phytoremediation potential, the more the amount of these low molecular weight secretions and the more complex these components, and the stronger the adaptability to polluted environment and the physiological plasticity to adapt to these contaminants.


Assuntos
Festuca/química , Exsudatos de Plantas/química , Raízes de Plantas/química , Pirenos/química , Poluentes do Solo/química , Biodegradação Ambiental , Solo
10.
Huan Jing Ke Xue ; 30(5): 1273-9, 2009 May 15.
Artigo em Chinês | MEDLINE | ID: mdl-19558089

RESUMO

The mechanisms of the removal and accumulation of phenanthrene (PHE) and pyrene (PYR) by rock plant Pogonatherum paniceum were studied by pot experiments. Results showed that P. paniceum might effectively remove PHE and PYR from soils at their initial concentrations of 20 to 322 mg x kg(-1). About 50.97%-86.77% of PHE or 46.45%-76.7% of PYR was removed from the soils respectively after 70-day plantation of P. paniceum; the average removal rates of PHE or PYR from the soils by P. paniceum were 63.56% and 58.6% higher than those of CK1 (with addition of 0.1% NaN3), and 46.09% and 42.92% higher than those of CK2 (without NaN3). P. paniceum did show ability to accumulate polycyclic aromatic hydrocarbons (PAHs) from the soils; the contents of PAHs in its root and shoot increased withthe increase of PAHs concentrations in the soils. The bioconcentration factors (BCFs) for PAHs tended to decrease with increasing concentrations of these contaminants in soil. BCFs for PYR were higher than those for PHE, and BCFs for PHE (0.12-1.63) and PYR (1.03-5.61) in shoots were much lower than those in roots (0.21-3.08 and 1.31-10.11) at the same treatment. The mechanisms of phytoremediation processes by P. paniceum involve both biotic and abiotic factors. Contributions of each factor to the phytoremediation processes were estimated, which indicated that abiotic loss, plant accumulation, phytodegredation and microbial degradation accounted for 5.1%, 0.32%, 4.22% and 17.47% of the total removal of PHE, and 2.56%, 4.27%, 2.01% and 15.68% of PYR from soils, respectively. In contrast, 41.56% removal of PHE and 36.64% of PYR were attributed to plant-microbial interactions. Thus plant-microbial interactions are the main mechanisms for the remediation of soil PAHs pollution.


Assuntos
Fenantrenos/isolamento & purificação , Poaceae/metabolismo , Pirenos/isolamento & purificação , Poluentes do Solo/isolamento & purificação , Biodegradação Ambiental
11.
Ying Yong Sheng Tai Xue Bao ; 19(8): 1682-7, 2008 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-18975742

RESUMO

With simulated mowing experiment and field survey, the compensation capacity and dominance shift of nine alpine plant species in grazing community were studied. The results showed that for most test species, there existed definite correlations between their compensation capacity and palatability. The species with better palatability, i.e., Astragalus polycladus, Medicago rythenica, Kobresia humilis, and Polygonum viviparvum, had higher compensation capacity, with their compensation index being 1.013, 0.907, 0.849, and 0.802, respectively, followed by Elymus nutans, with its compensation index being 0.668, while the species with poorer palatability, i.e., Taraxacum tibetanum, Swertis bimaculata, and Ajania tenuifolia had lower compensation capacity, with their compensation index being 0.649, 0.587, and 0.553, respectively. Festuca sinensis was more palatable but had the lowest compensation index (0.473). The nine species had three types of dominance shift, i.e., decreasing, increasing, and neutral. F. sinensis was of decreasing type, E. nutans, A. polycladus and P. viviparvum were of neutral, and the other five species were of increasing type. The compensation capacity and palatability of plant species in grazing community could explain their dominance shift to a certain extent.


Assuntos
Ecossistema , Comportamento Alimentar/fisiologia , Poaceae/crescimento & desenvolvimento , Poaceae/fisiologia , Animais , Animais Domésticos/fisiologia , Polygonum/fisiologia , Densidade Demográfica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...