Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 18(21): 13781-13793, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38752333

RESUMO

Pine wood nematode (PWN) disease is a globally devastating forest disease caused by infestation with PWN, Bursaphelenchus xylophilus, which mainly occurs through the vector insect Japanese pine sawyer (JPS), Monochamus alternatus. PWN disease is notoriously difficult to manage effectively and is known as the "cancer of pine trees." In this study, dual enzyme-responsive nanopesticides (AVM@EC@Pectin) were prepared using nanocoating avermectin (AVM) after modification with natural polymers. The proposed treatment can respond to the cell wall-degrading enzymes secreted by PWNs and vector insects during pine tree infestation to intelligently release pesticides to cut off the transmission and infestation pathways and realize the integrated control of PWN disease. The LC50 value of AVM@EC@Pectin was 11.19 mg/L for PWN and 26.31 mg/L for JPS. The insecticidal activity of AVM@EC@Pectin was higher than that of the commercial emulsifiable concentrate (AVM-EC), and the photostability, adhesion, and target penetration were improved. The half-life (t1/2) of AVM@EC@Pectin was 133.7 min, which is approximately twice that of AVM-EC (68.2 min). Sprayed and injected applications showed that nanopesticides had superior bidirectional transportation, with five-times higher AVM contents detected in the roots relative to those of AVM-EC when sprayed at the top. The safety experiment showed that the proposed treatment had lower toxicity and higher safety for nontarget organisms in the application environment and human cells. This study presents a green, safe, and effective strategy for the integrated management of PWN disease.


Assuntos
Biomassa , Ivermectina , Pinus , Animais , Pinus/parasitologia , Pinus/química , Ivermectina/análogos & derivados , Ivermectina/farmacologia , Ivermectina/química , Ivermectina/metabolismo , Doenças das Plantas/parasitologia , Doenças das Plantas/prevenção & controle , Nematoides/efeitos dos fármacos , Inseticidas/farmacologia , Inseticidas/química , Nanopartículas/química , Humanos
2.
Pestic Biochem Physiol ; 197: 105682, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38072539

RESUMO

High-performance pesticide formulations are essential for sustainable agriculture. Among these, nano-pesticides exhibit great advantages in pest control because of their unique size effects. However, the direct effects of nano-formulation fungicides on fungal pathogens remain largely unexplored. In this study, three qualified formulations, suspension concentrate (SC), microcapsules (CS), and nanocapsules (NCS) of pyraclostrobin (PYR) were prepared and utilized to reveal their biocontrol activities against Rhizoctonia solani. Among these three formulations, NCS exhibited notable biocontrol efficacy against R. solani exemplified by an EC50 of 0.319 mg/L for mycelia, distortion of mycelia and abnormalities in cell ultrastructure. Moreover, NCS displayed excellent internalization within R. solani mycelia, contributing to severe damage to cell membrane permeability. Importantly, an equivalent quantity of NCS-PYR showed potent inhibitory effects on the target pathogen, as indicated by reduced adenosine triphosphate (ATP) content and mitochondrial Complex III activity. The NCS consistently exhibited superior in vivo protective and curative activities against R. solani compared to those of CS and SC in rice and faba bean. In summary, we uncovered the strength of rapid efficacy and biocontrol activity of NCS against R. solani and elucidated the advantages of NCS-PYR from the perspective of the target pathogen in agriculture.


Assuntos
Nanocápsulas , Doenças das Plantas/prevenção & controle , Doenças das Plantas/microbiologia , Rhizoctonia
3.
Pest Manag Sci ; 79(10): 3808-3818, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37209281

RESUMO

BACKGROUND: Some traditional pesticide formulations are inefficient, leading to excessive use and abuse of pesticides, which in turn effects environment. Intelligent release pesticide formulations are ideal for improving pesticide utilization and persistence while reducing environmental pollution. RESULTS: We designed a benzil-modified chitosan oligosaccharide (CO-BZ) to encapsulate avermectin (Ave). Ave@CO-BZ nanocapsules are prepared based on a simple interfacial method via cross-linking of CO-BZ with diphenylmethane diisocyanate (MDI). The Ave@CO-BZ nanocapsules have an average particle size of 100 nm and exhibited a responsive release performance for ROS. The cumulative release rate of nanocapsules at 24 h with ROS increased by about 11.4% compared to that without ROS. The Ave@CO-BZ nanocapsules displayed good photostability. Ave@CO-BZ nanocapsules can penetrate root-knot nematodes more easily and exhibited better nematicidal activity against root-knot nematodes. The pot experiment showed that the control effect of Ave CS at low concentration was 53.31% at the initial stage of application (15 d), while Ave@CO-BZ nanocapsules was 63.54%. Under the same conditions, the control effect of Ave@CO-BZ nanocapsules on root-knot nematodes was 60.00% after 45 days of application, while Ave EC was only 13.33%. The acute toxicity experiments of earthworms showed that the toxicity of nanocapsules was significantly lower than that of EC. CONCLUSION: The ROS-responsive nanocapsules can improve the utilization of pesticides and non-target biosafety. This modified chitosan oligosaccharide has great potential as a bio stimuli-responsive material, and this simple and convenient method for preparing Ave@CO-BZ nanocapsules provides a direction for the effective utilization of pesticides. © 2023 Society of Chemical Industry.


Assuntos
Quitosana , Nanocápsulas , Praguicidas , Praguicidas/toxicidade , Espécies Reativas de Oxigênio , Oligossacarídeos
4.
Int J Biol Macromol ; 241: 124561, 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37094645

RESUMO

Developing an efficient drug delivery system to mitigate the harm caused by root-knot nematodes is crucial. In this study, enzyme-responsive release abamectin nanocapsules (AVB1a NCs) were prepared using 4, 4-diphenylmethane diisocyanate (MDI) and sodium carboxymethyl cellulose as response release factors. The results showed that the average size (D50) of the AVB1a NCs was 352 nm, and the encapsulation efficiency was 92 %. The median lethal concentration (LC50) of AVB1a NCs for Meloidogyne incognita activity was 0.82 mg L-1. Moreover, AVB1a NCs improved the permeability of AVB1a to root-knot nematodes and plant roots and the horizontal and vertical soil mobility. Furthermore, AVB1a NCs greatly reduced the adsorption of AVB1a by the soil compared to AVB1a emulsifiable concentrate (EC), and the effect of the AVB1a NCs on controlling root-knot nematode disease was increased by 36 %. Compared to the AVB1a EC, the pesticide delivery system significantly reduced the acute toxicity to the soil biological earthworms by approximately 16 times that of the AVB1a and had a lower overall impact on the soil microbial communities. This enzyme-responsive pesticide delivery system had a simple preparation method, excellent performance, and high level of safety, and thus has great application potential for plant diseases and insect pests control.


Assuntos
Nanocápsulas , Praguicidas , Solanum lycopersicum , Tylenchoidea , Animais , Carboximetilcelulose Sódica/farmacologia , Praguicidas/farmacologia , Solo , Sódio/farmacologia
5.
Pest Manag Sci ; 77(10): 4418-4424, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33991053

RESUMO

BACKGROUND: Increasing pesticide retention on crop leaves is a key approach for guaranteeing efficacy when products are applied to foliage. Evidently, the formulation plays an important role in this process. Microcapsules (MCs) are a promising formulation, but whether and how their adhesion to the leaf surface affects retention and efficacy is not well understood. RESULTS: In this study, we found that the incorporation of polyethylene glycol (PEG) with different molecular weights into the MC shell affects the release profile of MCs and the contact area of these MCs to leaves by changing their softness. The cumulative release rates of pyraclostrobin (Pyr) MCs fabricated with PEG200, PEG400, PEG800 and PEG1500 were 80.61%, 90.98%, 94.07% and 97.40%, respectively. Scanning electron microscopy observations showed that the flexibility of the MCs increased with increasing PEG molecular weight. The median lethal concentration (LC50 ) of the MCs with different PEG to the zebrafish were 12.10, 8.10, 3.90 and 1.46 mg L-1 , respectively, which also indirectly reflected their release rate. Rainwater had less influence on the retention of the MCs prepared with PEG1500 than with the other PEG, which indicates a better adhesion to the target leave surfaces. MCs with the highest residual efficacy had better control efficacy on peanut leaf spot in field trials. CONCLUSION: Overall, adding PEG with an appropriate molecular weight to the MC shell can regulate the structure of the MC shell to improve the affinity between the MCs and leaves, which further improves the utilization of pesticides and reduces the environmental risks of pesticides. © 2021 Society of Chemical Industry.


Assuntos
Fungicidas Industriais , Praguicidas , Animais , Cápsulas , Fungicidas Industriais/farmacologia , Polímeros , Peixe-Zebra
6.
J Agric Food Chem ; 69(7): 2099-2107, 2021 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-33555871

RESUMO

The fungicide pyraclostrobin is highly toxic to aquatic organisms. Microencapsulation is an effective way to reduce the exposure of pyraclostrobin to aquatic organisms but it also reduces the contact probability between the fungicide and plant pathogens. Hence, winning a balance between the toxicity and bioactivity of pyraclostrobin is very necessary. In this study, triethylenetetramine (TETA), ethylenediamine (EDA), hexamethylenediamine (HAD), and isophoronediamine (IPDA) were selected as cross-linkers to prepare the pyraclostrobin-loaded polyurea microcapsules (PU-MCs) by interfacial polymerization. TETA formed the shells with the highest degree of cross-linking, the slowest release profile, and the best protection against ultraviolet (UV). In terms of MCs fabricated by diamines, higher leaking, weaker UV resistance of the shells was observed with increasing carbon skeleton. TETA-MCs showed the highest safety to zebrafish (LC50 of 10.086 mg/L), whereas EDA-MCs, HAD-MCs, and IPDA-MCs were 5.342, 3.967, and 0.767 mg/L, respectively. TETA-MCs had the best long-term disease management, while the control efficacies of other MCs were higher at the early stage of disease development. Overall, a balance between the aquatic toxicities and fungicidal activities of pyraclostrobin-loaded PU-MCs could be reached through a simple selection of polyamines in the fabrication.


Assuntos
Poliaminas , Peixe-Zebra , Animais , Cápsulas , Polímeros , Estrobilurinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...