Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
IEEE Trans Neural Netw Learn Syst ; 34(6): 3082-3096, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34546930

RESUMO

Deep learning has demonstrated splendid performance in mechanical fault diagnosis on condition that source and target data are identically distributed. In engineering practice, however, the domain shift between source and target domains significantly limits the further application of intelligent algorithms. Despite various transfer techniques proposed, either they focus on single-source domain adaptation (SDA) or they utilize multisource domain globally or locally, which both cannot address the cross-domain diagnosis effectively, especially with category shift. To this end, we propose globally localized multisource DA for cross-domain fault diagnosis with category shift. Specifically, we construct a GlocalNet to fuse multisource information comprehensively, which consists of a feature generator and three classifiers. By optimizing the Wasserstein discrepancy of classifiers locally and accumulative higher order multisource moment globally, multisource DA is achieved from domain and class levels thus to reduce the shift on domain and category. To refine the classifier at sample level, a distilling strategy is presented. Finally, an adaptive weighting policy is employed for reliable result. To evaluate the effectiveness, the proposed method is compared with multiple methods on four bearing vibration datasets. Experimental results indicate the superiority and practicability of the proposed method for cross-domain fault diagnosis.

2.
ISA Trans ; 128(Pt B): 1-10, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34953580

RESUMO

Intelligent fault diagnosis has been a promising way for condition-based maintenance. However, the small sample problem has limited the application of intelligent fault diagnosis into real industrial manufacturing. Recently, the generative adversarial network (GAN) is considered as a promising way to solve the problem of small sample. For this purpose, this paper reviews the related research results on small-sample-focused fault diagnosis methods using the GAN. First, a systematic description of the GAN, and its variants, including structure-focused and loss-focused improvements, are introduced in the paper. Second, the paper reviews the related GAN-based intelligent fault diagnosis methods and classifies these studies into three main categories, deep generative adversarial networks for data augmentation, adversarial training for transfer learning, and other application scenarios (including GAN for anomaly detection and semi-supervised adversarial learning). Finally, the paper discusses several limitations of existing studies and points out future perspectives of GAN-based applications.

3.
ISA Trans ; 111: 337-349, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33223190

RESUMO

Data-driven intelligent diagnosis model plays a key role in the monitoring and maintenance of mechanical equipment. However, due to practical limitations, the fault data is difficult to obtain, which makes model training unsatisfactory and results in poor testing performance. Based on the characteristics of 1-D mechanical vibration signal, this paper proposes Supervised Data Augmentation (SDA) as a regularization method to provide more effective training samples, which includes Cut-Flip and Mix-Normal. Cut-Flip is used directly on the raw sample without parameter selection. Mix-Normal mixes the data and labels of a random sample with a random normal sample at a certain ratio. The proposed SDA is verified on two bearing datasets with some popular intelligent diagnosis networks. Besides, we also design a Batch Normalization CNN (BNCNN) to learn the small dataset. Results show that SDA can significantly improve the classification accuracy of BNCNN by 10%-30% under 1-8 samples of each class. The proposed method also shows a competitive performance with existing advanced methods. Finally, we further discuss each data augmentation method through a series of ablation experiments and summarize the advantages and disadvantages of the proposed SDA.

4.
ISA Trans ; 101: 379-389, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31955949

RESUMO

Rolling bearings are the widely used parts in most of the industrial automation systems. As a result, intelligent fault identification of rolling bearing is important to ensure the stable operation of the industrial automation systems. However, a major problem in intelligent fault identification is that it needs a large number of labeled samples to obtain a well-trained model. Aiming at this problem, the paper proposes a semi-supervised multi-scale convolutional generative adversarial network for bearing fault identification which uses partially labeled samples and sufficient unlabeled samples for training. The network adopts a one-dimensional multi-scale convolutional neural network as the discriminator and a multi-scale deconvolutional neural network as the generator and the model is trained through an adversarial process. Because of the full use of unlabeled samples, the proposed semi-supervised model can detect the faults in bearings with limited labeled samples. The proposed method is tested on three datasets and the average classification accuracy arrived at of 100%, 99.28% and 96.58% respectively Results indicate that the proposed semi-supervised convolutional generative adversarial network achieves satisfactory performance in bearing fault identification when the labeled data are insufficient.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...