Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Function (Oxf) ; 5(2): zqae004, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38486976

RESUMO

The skeletal system is crucial for supporting bodily functions, protecting vital organs, facilitating hematopoiesis, and storing essential minerals. Skeletal homeostasis, which includes aspects such as bone density, structural integrity, and regenerative processes, is essential for normal skeletal function. Autophagy, an intricate intracellular mechanism for degrading and recycling cellular components, plays a multifaceted role in bone metabolism. It involves sequestering cellular waste, damaged proteins, and organelles within autophagosomes, which are then degraded and recycled. Autophagy's impact on bone health varies depending on factors such as regulation, cell type, environmental cues, and physiological context. Despite being traditionally considered a cytoplasmic process, autophagy is subject to transcriptional and epigenetic regulation within the nucleus. However, the precise influence of epigenetic regulation, including DNA methylation, histone modifications, and non-coding RNA expression, on cellular fate remains incompletely understood. The interplay between autophagy and epigenetic modifications adds complexity to bone cell regulation. This article provides an in-depth exploration of the intricate interplay between these two regulatory paradigms, with a focus on the epigenetic control of autophagy in bone metabolism. Such an understanding enhances our knowledge of bone metabolism-related disorders and offers insights for the development of targeted therapeutic strategies.


Assuntos
Doenças Ósseas Metabólicas , Epigênese Genética , Humanos , Autofagia/genética , Homeostase , Autofagossomos , Densidade Óssea
2.
Chemosphere ; 353: 141553, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38412891

RESUMO

Microplastics (MPs) and antibiotics are novel water pollutants that have attracted increasing attention. Constructed wetlands (CWs) are widely applied treating various types of polluted water. How these two new pollutants affect plants and microorganisms in CWs, especially deciphering the unknown roles of MPs size and concentration, is of great essential. Here, five CW treatments with submerged macrophyte Myriophyllum aquaticum were established to treat oxytetracycline (OTC) antibiotic-polluted water. The effects of polystyrene (PS) nanoplastics (NPs) (700 nm) and MPs (90-110 µm) on plant and microbial communities at 10 µg/L and 1 mg/L, respectively, were systematically evaluated. PS reduced the nitrogen and phosphorus removal efficiencies and inhibited OTC removal. Low doses (10 µg/L) of NPs and high doses (1 mg/L) of MPs had the greatest effects on plant and microbial responses. The overall effect of MPs was greater than that of NPs. Compared with high NPs concentration (1 mg/L), low concentrations (10 µg/L) had higher catalase (CAT), superoxide dismutase (SOD), and malondialdehyde (MDA) content. However, the activity and content of MPs at low concentrations (10 µg/L) were lower than those at high concentrations (1 mg/L). The coexistence of OTC and MPs/NPs decreased the microbial diversity and abundance. Low doses of NPs and high doses of MPs decreased the relative abundance of Abditibacteriota, Deinococccota, and Zixibacteria. Redundancy and network analyses revealed a strong correlation between pollutant removal and plant and microbial responses. NH4+-N and OTC removal was positively and negatively correlated with CAT, SOD, and MDA content, respectively. MDA positively correlated to chlorophyll content, whereas SOD showed a negative correlation with Chloroflexi. This study highlighted the scale effect of MPs in wastewater treatment via CWs. It enhances our understanding of the response of plants and microorganisms to the remediation of water co-polluted with MPs and antibiotics.


Assuntos
Microplásticos , Oxitetraciclina , Plásticos , Áreas Alagadas , Antibacterianos/toxicidade , Antibacterianos/análise , Plantas , Poliestirenos/análise , Oxitetraciclina/toxicidade , Superóxido Dismutase , Água , Nitrogênio , Eliminação de Resíduos Líquidos
3.
Environ Sci Pollut Res Int ; 30(28): 72710-72720, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37178302

RESUMO

This study investigated the effect of biochar on real domestic wastewater treatment by constructed wetlands (CWs). To evaluate the role of biochar as a substrate and electron transfer medium on nitrogen transformation, three treatments of CW microcosms were established: conventional substrate (T1), biochar substrate (T2), and biochar-mediated electron transfer (T3). Nitrogen removal increased from 74% in T1 to 77.4% in T2 and 82.1% in T3. Nitrate generation increased in T2 (up to 2 mg/L) but decreased in T3 (lower than 0.8 mg/L), and the nitrification genes (amoA, Hao, and nxrA) in T2 and T3 increased by 132-164% and 129-217%, respectively, compared with T1 (1.56 × 104- 2.34 × 107 copies/g). The nitrifying Nitrosomonas, denitrifying Dechloromonas, and denitrification genes (narL, nirK, norC, and nosZ) in the anode and cathode of T3 were significantly higher than those of the other treatments (increased by 60-fold, 35-fold, and 19-38%). The genus Geobacter, related to electron transfer, increased in T3 (by 48-fold), and stable voltage (~150 mV) and power density (~9 uW/m2) were achieved. These results highlight the biochar-mediated enhancement of nitrogen removal in constructed wetlands via nitrification, denitrification, and electron transfer, and provide a promising approach for enhanced nitrogen removal by constructed wetland technology.


Assuntos
Desnitrificação , Nitrificação , Áreas Alagadas , Nitrogênio , Elétrons , Eliminação de Resíduos Líquidos/métodos
4.
Environ Sci Pollut Res Int ; 30(25): 67326-67337, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37106308

RESUMO

In this study, we examine the dewaterability of sludge after treatment by KMnO4 at various pH levels, with the goal of understanding the dewaterability of strong oxidizers to waste activated sludge. Good dewatering performance is observed, with capillary suction times (CST) reduced from 263.4 to 30.1 s, and specific resistance to filtration (SRF) falling by 19.6%. Proteins and polysaccharides in tightly bound extracellular polymeric substances (EPS) were also significantly reduced. Based on spectroscopic and electrochemical analysis, we propose mechanisms for the improved dewatering in terms of changes to the sludge's physicochemical properties and EPS. Under strong oxidation, the structure surrounding the bound water is oxidized and bound water is released, so the dewaterability of the sludge is improved.Weiliang Pan and Jiaoni Li contributed equally to this work.


Assuntos
Matriz Extracelular de Substâncias Poliméricas , Esgotos , Concentração de Íons de Hidrogênio , Eliminação de Resíduos Líquidos , Água
5.
Bioresour Technol ; 374: 128776, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36822557

RESUMO

Effects of biochar addition on the performance of anaerobic dynamic membrane bioreactor (AnDMBR) under different temperatures for blackwater treatment was investigated. When the organic load ratios (OLR) was 1.0 g COD/L·d, the specific methane yield for the three biochar-amended reactors were 125.7, 148.0 and 182.3 mLCH4/g CODremoved, respectively. Compare to those digesters without biochar participation, the methane production in the thermophilic reactor with biochar increased by 12% while the other two digesters increased by 6-10%. An analysis of membrane filtration resistance showed a reduction in total resistance (Rt) of 6.2 × 1011-7.3 × 1011 m-1 when biochar was added to the three reactors. The thermophilic reactors with biochar increased the relative abundance of Methanothermobacter and promoted gene expression of metabolic pathways related to hydrolysis, acid production and methane production. Overall, biochar showed great potential as an inexpensive conductive material to increase methane production with reduced membrane fouling in AnDMBR systems.


Assuntos
Reatores Biológicos , Metano , Anaerobiose , Temperatura , Esgotos
6.
Bioresour Technol ; 355: 127295, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35550923

RESUMO

Two anaerobic dynamic membrane bioreactors (AnDMBRs) were set up for the treatment of synthetic blackwater at room temperature (20-25 °C) and mesophilic conditions for 180 days with progressively increased organic loading rates(OLR). Despite dynamic membranes (DM), organics removal at room temperature was similar to removal within the mesophilic conditions of the reactor, with some disparities in methane production. A dense sludge filtration layer was more likely to be formed on the DM at room temperature, resulting in a faster membrane fouling. Microbial community analysis revealed that microorganisms had higher richness and lower diversity at room temperature, which was beneficial to the growth of Actinobacteriota, especially Propioniciclava. This comparative study discusses the feasibility of operating an AnDMBR under room temperature conditions versus mesophilic conditions. This analysis provides novel insights into future large-scale attempts to treat blackwater at room temperature.


Assuntos
Reatores Biológicos , Esgotos , Anaerobiose , Filtração , Metano , Temperatura , Eliminação de Resíduos Líquidos
7.
J Sep Sci ; 39(7): 1258-65, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26888089

RESUMO

A novel dispersive solid-phase extraction combined with vortex-assisted dispersive liquid-liquid microextraction based on solidification of floating organic droplet was developed for the determination of eight benzoylurea insecticides in soil and sewage sludge samples before high-performance liquid chromatography with ultraviolet detection. The analytes were first extracted from the soil and sludge samples into acetone under optimized pretreatment conditions. Clean-up of the extract was conducted by dispersive solid-phase extraction using activated carbon as the sorbent. The vortex-assisted dispersive liquid-liquid microextraction based on solidification of floating organic droplet procedure was performed by using 1-undecanol with lower density than water as the extraction solvent, and the acetone contained in the solution also acted as dispersive solvent. Under the optimum conditions, the linearity of the method was in the range 2-500 ng/g with correlation coefficients (r) of 0.9993-0.9999. The limits of detection were in the range of 0.08-0.56 ng/g. The relative standard deviations varied from 2.16 to 6.26% (n = 5). The enrichment factors ranged from 104 to 118. The extraction recoveries ranged from 81.05 to 97.82% for all of the analytes. The good performance has demonstrated that the proposed methodology has a strong potential for application in the multiresidue analysis of complex matrices.

8.
Arch Environ Contam Toxicol ; 70(3): 607-14, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26614355

RESUMO

A low toxic solvent-based vortex-assisted surfactant-enhanced emulsification liquid-liquid microextraction (LT-VSLLME) combined with graphite furnace atomic absorption spectrometry was developed for the extraction and determination of lead (Pb) in water samples. In the LT-VSLLME method, the extraction solvent was dispersed into the aqueous samples by the assistance of vortex agitator. Meanwhile, the addition of a surfactant, which acted as an emulsifier, could enhance the speed of the mass-transfer from aqueous samples to the extraction solvent. The influences of analytical parameters, including extraction solvent type and its volume, surfactant type and its volume, pH, concentration of chelating agent, salt effect and extraction time were investigated. Under the optimized conditions, a good relative standard deviation of 3.69% at 10 ng L(-1) was obtained. The calibration graph showed a linear pattern in the ranges of 5-30 ngL(-1), with a limit of detection of 0.76 ng L(-1). The linearity was obtained by five points in the concentration range of 5-30 ngL(-1). The enrichment factor was 320. The procedure was applied to wastewater and river water, and the accuracy was assessed through the analysis of the recovery experiments.


Assuntos
Monitoramento Ambiental/métodos , Chumbo/análise , Poluentes Químicos da Água/análise , Calibragem , Quelantes , Grafite/química , Limite de Detecção , Microextração em Fase Líquida , Espectrofotometria Atômica , Tensoativos
9.
J Sep Sci ; 38(20): 3487-93, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26257135

RESUMO

Vortex-assisted liquid-liquid microextraction followed by high-performance liquid chromatography with UV detection was applied to determine Isocarbophos, Parathion-methyl, Triazophos, Phoxim and Chlorpyrifos-methyl in water samples. 1-Bromobutane was used as the extraction solvent, which has a higher density than water and low toxicity. Centrifugation and disperser solvent were not required in this microextraction procedure. The optimum extraction conditions for 15 mL water sample were: pH of the sample solution, 5; volume of the extraction solvent, 80 µL; vortex time, 2 min; salt addition, 0.5 g. Under the optimum conditions, enrichment factors ranging from 196 to 237 and limits of detection below 0.38 µg/L were obtained for the determination of target pesticides in water. Good linearities (r > 0.9992) were obtained within the range of 1-500 µg/L for all the compounds. The relative standard deviations were in the range of 1.62-2.86% and the recoveries of spiked samples ranged from 89.80 to 104.20%. The whole proposed methodology is simple, rapid, sensitive and environmentally friendly for determining traces of organophosphorus pesticides in the water samples.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...