Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microsc Microanal ; 29(6): 2149-2160, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-37967302

RESUMO

Mammalian oocyte maturation relies on mitochondrial ATP production, but this can lead to damaging reactive oxygen species (ROS). SIRT3, a mitochondrial sirtuin, plays a critical role in regulating mitochondrial redox balance in mouse oocytes under stress; however, its specific roles in porcine oocytes remain unclear. In this study, we utilized the SIRT3 inhibitor 3-TYP to investigate SIRT3's importance in porcine oocyte maturation. Our findings revealed that SIRT3 is expressed in porcine oocytes and its inhibition leads to maturation failure. This was evident through reduced polar body extrusion, arrested cell cycle, as well as disrupted spindle organization and actin distribution. Furthermore, SIRT3 inhibition resulted in a decrease in mitochondrial DNA copy numbers, disruption of mitochondrial membrane potential, and reduced ATP levels, all indicating impaired mitochondrial function in porcine oocytes. Additionally, the primary source of damaged mitochondria was associated with decreased levels of deacetylated superoxide dismutase 2 (SOD2) after SIRT3 inhibition, which led to ROS accumulation and oxidative stress-induced apoptosis. Taken together, our results suggest that SIRT3 regulates the levels of deacetylated SOD2 to maintain redox balance and preserve mitochondrial function during porcine oocyte maturation, with potential implications for improving pig reproduction.


Assuntos
Doenças Mitocondriais , Sirtuína 3 , Camundongos , Animais , Suínos , Espécies Reativas de Oxigênio , Sirtuína 3/genética , Sirtuína 3/metabolismo , Estresse Oxidativo , Oócitos/metabolismo , Trifosfato de Adenosina/metabolismo , Doenças Mitocondriais/metabolismo , Mamíferos/metabolismo
2.
Environ Toxicol ; 36(11): 2217-2224, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34314561

RESUMO

Citrinin (CTN) is a mycotoxin, which is isolated from Penicillium citrinum and widely existed in the contaminated feeds. It is reported that CTN is toxic to heart, liver, and reproductive system. Previous studies indicated that CTN induced apoptosis in oocytes and embryos. In this study, we reported the potential causes of CTN on embryo development. Our results showed that 40 µM CTN exposure significantly reduced the first cleavage of mouse embryos, showing with the low rate of 2-cell embryos. We found that CTN induced DNA damage, showing the higher positive γH2A.X signals. Autophagy was occurred since more LC3 positive autophagosomes were found in the cytoplasm. This could be confirmed by the enhanced lysosome function, since higher accumulated lysosome distribution were found and LAMP2 was also increased under CTN exposure. Besides, we showed that mitochondria distribution was disturbed, indicating that CTN could disrupt mitochondria function, which could be the possible reason for the oxidative stress and apoptosis in CTN-exposed embryos. In conclusion, our study showed that CTN exposure had adverse effects on the early embryo development during first cleavage through its effects on the induction of DNA damage, autophagy, and mitochondria dysfunction.


Assuntos
Citrinina , Animais , Apoptose , Autofagia , Citrinina/toxicidade , Dano ao DNA , Camundongos , Mitocôndrias , Penicillium
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...