Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 8(6): e65944, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23825528

RESUMO

Bats and cetaceans (i.e., whales, dolphins, porpoises) are two kinds of mammals with unique locomotive styles and occupy novel niches. Bats are the only mammals capable of sustained flight in the sky, while cetaceans have returned to the aquatic environment and are specialized for swimming. Associated with these novel adaptations to their environment, various development changes have occurred to their body plans and associated structures. Given the importance of Hox genes in many aspects of embryonic development, we conducted an analysis of the coding regions of all Hox gene family members from bats (represented by Pteropus vampyrus, Pteropus alecto, Myotis lucifugus and Myotis davidii) and cetaceans (represented by Tursiops truncatus) for adaptive evolution using the available draft genome sequences. Differences in the selective pressures acting on many Hox genes in bats and cetaceans were found compared to other mammals. Positive selection, however, was not found to act on any of the Hox genes in the common ancestor of bats and only upon Hoxb9 in cetaceans. PCR amplification data from additional bat and cetacean species, and application of the branch-site test 2, showed that the Hoxb2 gene within bats had significant evidence of positive selection. Thus, our study, with genomic and newly sequenced Hox genes, identifies two candidate Hox genes that may be closely linked with developmental changes in bats and cetaceans, such as those associated with the pancreatic, neuronal, thymus shape and forelimb. In addition, the difference in our results from the genome-wide scan and newly sequenced data reveals that great care must be taken in interpreting results from draft genome data from a limited number of species, and deep genetic sampling of a particular clade is a powerful tool for generating complementary data to address this limitation.


Assuntos
Quirópteros/metabolismo , Golfinhos/metabolismo , Genes Homeobox/genética , Animais , Evolução Molecular , Regulação da Expressão Gênica no Desenvolvimento , Genes Homeobox/fisiologia
2.
Nanotechnology ; 20(41): 415605, 2009 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-19762949

RESUMO

By exploiting a simple solution approach, we bound ethoxy-terminated Si nanoparticles to surface functionalized multi-walled carbon nanotubes (MWCNTs) via covalent bonds. Quenching of photoluminescence (PL) of the Si nanoparticles was observed once they were conjugated to the MWCNTs. Analysis of the time-resolved PL decay and calculation indicated that Föster resonance energy transfer from the Si nanoparticles to the MWCNTs may be responsible for the PL quenching. The results suggest novel potential applications of the unique Si/MWCNT nanocomposites in optoelectronic devices.


Assuntos
Nanopartículas/química , Nanotecnologia/métodos , Nanotubos de Carbono/química , Transferência Ressonante de Energia de Fluorescência , Modelos Teóricos
3.
Biochem Biophys Res Commun ; 356(3): 616-21, 2007 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-17374362

RESUMO

The S100 protein family is the largest group of calcium-binding protein families, which consists of at least 25 members. S100A13, which is widely expressed in a variety of tissues, is a unique member of the S100 protein family. Previous reports showed that S100A13 might be involved in the stress-induced release of some signal peptide-less proteins (such as FGF-1 and IL-1alpha) and also associated with inflammatory functions. It was also reported that S100A13 is a new angiogenesis marker. Here we report the crystal structure of the Ca(2+)-bound form of S100A13 at 2.0 A resolution. S100A13 is a homodimer with four EF-hand motifs in an asymmetric unit, displaying a folding pattern similar to other S100 members. However, S100A13 has the unique structural feature with all alpha-helices being amphiphilic, which was not found in other members of S100s. We propose that this characteristic structure of S100A13 might be related to its ability to mediate the release of FGF-1 and IL-1alpha.


Assuntos
Proteínas S100/química , Cristalografia por Raios X , Dimerização , Humanos , Modelos Moleculares , Ressonância de Plasmônio de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...