Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 889: 164192, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37196953

RESUMO

The study assessed the occurrence and distribution of microbial community and antibiotic resistance genes (ARGs) in food waste, anaerobic digestate, and paddy soil samples, and revealed the potential hosts of ARGs and factors influencing their distribution. A total of 24 bacterial phyla were identified, of which 16 were shared by all samples, with Firmicutes, Bacteroidetes, Actinobacteria, and Proteobacteria accounting for 65.9-92.3 % of the total bacterial community. Firmicutes was the most abundant bacteria in food waste and digestate samples, accounting for 33-83 % of the total microbial community. However, in paddy soil samples with digestate, Proteobacteria had the highest relative abundance of 38-60 %. Further, 22 ARGs were detected in food waste and digestate samples, with multidrug, macrolide-lincosamide-streptogramin (MLS), bacitracin, aminoglycoside, tetracycline, vancomycin, sulfonamide, and rifamycin resistance genes being the most abundant and shared by all samples. The highest total relative abundance of ARGs in food waste, digestate, and soil without and with digestate was detected in samples from January 2020, May 2020, October 2019, and May 2020, respectively. The MLS, vancomycin, tetracycline, aminoglycoside, and sulfonamide resistance genes had higher relative abundance in food waste and anaerobic digestate samples, whereas multidrug, bacteriocin, quinolone, and rifampin resistance genes were more abundant in paddy soil samples. Redundancy analysis demonstrated that aminoglycoside, tetracycline, sulfonamide, and rifamycin resistance genes were positively correlated with total ammonia nitrogen and pH of food waste and digestate samples. Vancomycin, multidrug, bacitracin, and fosmidomycin resistance genes had positive correlations with potassium, moisture, and organic matter in soil samples. The co-occurrence of ARG subtypes with bacterial genera was investigated using network analysis. Actinobacteria, Proteobacteria, Bacteroidetes, and Acidobacteria were identified as potential hosts of multidrug resistance genes.


Assuntos
Microbiota , Eliminação de Resíduos , Rifamicinas , Antibacterianos/farmacologia , Alimentos , Genes Bacterianos , Vancomicina , Bacitracina , Solo , Anaerobiose , Bactérias , Resistência Microbiana a Medicamentos/genética , Aminoglicosídeos , Tetraciclinas
2.
Environ Sci Pollut Res Int ; 30(11): 30766-30778, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36441318

RESUMO

Rainfall runoff and combined sewer overflow (CSO) converge with organic waste, nutrients, and microbes from the ground and wastewater. These pollutants promote the spread and transformation of antibiotic resistance genes (ARGs). In this study, four rainfall runoff and one CSO outfall were chosen, and samples were collected to explore the occurrence and distribution of ARGs. The ARGs were extracted from suspended solids and analyzed using metagenomic sequencing. A total of 888 ARG subtypes, belonging to 17 ARG types, were detected in all samples. Eleven ARG types were shared by all the samples. Multidrug resistance genes had the highest relative abundance. Their total relative abundance reached 1.07 ratio (ARG copy number/16S rRNA gene copy number) and comprised 46.6% of all the ARGs. In all samples, the CSO outfall had the highest total relative abundance (8.25 × 10-1 ratio) of ARGs, with a ratio ranging ND (not detected)-3.78 × 10-1 ratio. Furthermore, the relationship between ARG types and environmental factors was determined using redundancy analysis. The results showed that chemical organic demand (COD) and bacterial abundance were positively correlated with most ARG types, including multidrug, bacitracin, aminoglycoside, ß-lactam, tetracycline, and sulfonamide. NH3-N, TN, and TP were positively correlated with rifamycin, fosmidomycin, and vancomycin resistance genes. The relationship among the ARG subtypes was investigated using network analyses. The multidrug resistance gene subtypes had the highest frequency of co-occurrence. This study provides insights into the occurrence and distribution of ARGs under non-point source pollution and may contribute to the control of ARGs.


Assuntos
Antibacterianos , Genes Bacterianos , Antibacterianos/farmacologia , RNA Ribossômico 16S/genética , Bactérias/genética , Resistência Microbiana a Medicamentos/genética
3.
J Colloid Interface Sci ; 634: 782-792, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36565620

RESUMO

Ignited by the concept of bionics, hydrogel-based bionic skin sensors have received more and more attention and been widely used in health monitoring, robots, implantable prostheses and human-machine interfaces. However, there still remain some challenges to be urgently solved for hydrogel-based bionic skin sensors, such as the water evaporation and the defects of single conductive mechanism of electronic skin or ionic skin. Herein, we prepared a polyvinyl alcohol/polyacrylamide/CaCl2/MXene (PPCM) ionotronics hydrogel with moisture self-regenerative, highly sensitive, ultra-low temperature anti-freezing (-50 °C) and self-adhesive features and applied it as bionic skin strain sensor. The introduction of MXene and CaCl2 endows the PPCM hydrogel with both electron and ion conductive channels, which effectively compensates for the defects of single electronic skin or ionic skin. Importantly, the addition of CaCl2 into the PPCM hydrogel offers it the moisture self-regenerative ability, holding the long-term water retention. The water in the PPCM hydrogel can still be kept in a stable state after continuous use for 70 days at room temperature, thus ensuring the long-term stability of the hydrogel-based sensor. Such a moisture self-regenerative ability should be an important feature for intelligentizing the hydrogel-based bionic skin for practical applications.


Assuntos
Biônica , Álcool de Polivinil , Humanos , Cloreto de Cálcio , Cimentos de Resina , Temperatura , Condutividade Elétrica , Hidrogéis
4.
Huan Jing Ke Xue ; 43(2): 795-802, 2022 Feb 08.
Artigo em Chinês | MEDLINE | ID: mdl-35075853

RESUMO

Urban runoff pollution can carry pollutants into the receiving water through scouring and leaching, causing black color and odor or eutrophication. Understanding and mastering the characteristics of runoff pollution is a prerequisite for the effective control of runoff pollution. This study aimed to comprehensively analyze the temporal and spatial distribution characteristics of runoff pollution and the correlation between pollutants in the urban area of Langfang City. Rainfall runoff samples were collected seven times by setting up 14 sampling sites within the urban area. The suspended solids (SS), chemical oxygen demand (COD), N, P, fecal E. coli, anionic surfactants, volatile phenols, and Zn, Cr6+, As, Cu, etc. were analyzed. The source and distribution of pollutants were summarized and analyzed through principal component analysis and cluster analysis. The results showed that the concentration of pollutants in runoff in Langfang City varied greatly at different times and locations. The average ρ(SS) at each point ranged from 150-500 mg·L-1, and the average concentrations of COD, N, P, and fecal E. coli all exceeded those of the surface water standard Ⅴ. The average concentration of anionic surfactants, petroleum, and volatile phenols were between those of the surface water standard Ⅰ and standard Ⅳ. The concentrations of metal pollutants were relatively low. NH4+-N had a positive correlation with total nitrogen (TN), volatile phenols, and As. COD had a certain positive correlation with TN, total phosphorus (TP), Cr6+, and As, whereas fecal E. coli had a certain negative correlation with Zn and Cu. The organic matter, P, Cu, and SS were probably derived from vehicle tires and road surfaces. All sampling sites could be roughly divided into four types according to the features of pollution:mainly commercial service areas, residential areas, larger arterial roads, and small roads between communities. The pollution of runoff in Langfang City was relatively serious, especially that of COD, N, and P. This research provides important reference values for the control and regulation of runoff pollution in urban areas and other northern cities.


Assuntos
Movimentos da Água , Poluentes Químicos da Água , China , Cidades , Monitoramento Ambiental , Escherichia coli , Fósforo/análise , Chuva , Poluentes Químicos da Água/análise
5.
Bioresour Technol ; 343: 126144, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34673194

RESUMO

The effectiveness of producing n-caproate from food waste without external electron donors (EDs) was investigated through batch and semi-continuous fermentation. The maximum concentration of n-caproate reached 10,226.28 mg COD/L during semi-continuous fermentation. The specificity for n-caproate was the highest at 40.19 ± 3.95%, and the soluble COD conversion rate of n-caproate reached up to 22.50 ± 1.09% at the end of batch fermentation. The production of n-caproate was coupled with the generation of lactate as an ED to facilitate chain elongation reactions. When lactate was used as the only substrate, n-butyrate (64.12 ± 20.11%) markedly dominated the products, instead of n-caproate (0.63 ± 0.07%). Microbial community analysis revealed that Caproiciproducens, Rummeliibacillus, and Clostridium_sensu_stricto_12 were the key genera related to n-caproate production. In addition to n-caproate, n-butyrate dominated the products in batch and semi-continuous fermentation with a maximum specificity of 47.59 ± 3.39%. Clostridium_sensu_stricto_7 was committed to producing n-butyrate from lactate.


Assuntos
Caproatos , Eliminação de Resíduos , Reatores Biológicos , Elétrons , Fermentação , Alimentos
6.
Aging (Albany NY) ; 12(19): 19173-19220, 2020 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-33051402

RESUMO

More than 10 GWASs have reported numerous genetic loci associated with tuberculosis (TB). However, the functional effects of genetic variants on TB remains largely unknown. In the present study, by combining a reported GWAS summary dataset (N = 452,264) with 3 independent eQTL datasets (N = 2,242) and other omics datasets downloaded from public databases, we conducted an integrative genomics analysis to highlight SNPs and genes implicated in TB risk. Based on independent biological and technical validations, we prioritized 26 candidate genes with eSNPs significantly associated with gene expression and TB susceptibility simultaneously; such as, CDC16 (rs7987202, rs9590408, and rs948182) and RCN3 (rs2946863, rs2878342, and rs3810194). Based on the network-based enrichment analysis, we found these 26 highlighted genes were jointly connected to exert effects on TB susceptibility. The co-expression patterns among these 26 genes were remarkably changed according to Mycobacterium tuberculosis (MTB) infection status. Based on 4 independent gene expression datasets, 21 of 26 genes (80.77%) showed significantly differential expressions between TB group and control group in mesenchymal stem cells, mice blood and lung tissues, as well as human alveolar macrophages. Together, we provide robust evidence to support 26 highlighted genes as important candidates for TB.

7.
Cell Mol Biol (Noisy-le-grand) ; 66(5): 131-136, 2020 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-33040826

RESUMO

Sepsis is a dangerous disease that is caused by an overreaction of the body's immune system to infection and gradually spreads throughout the body. This experiment was carried out to explore the expression of LncRNA MEG3 in sepsis and its effect on LPS-induced macrophage function. Methods 60 sepsis patients admitted to our hospital from February 2017 to September 2018 were selected as the sepsis group, and 50 non-septic patients diagnosed and treated in our hospital during the same period were selected as the control group. qRT-PCR was used to detect the expression level of MEG3. ROC curve was used to analyze the diagnostic value of serum MEG3 in sepsis. The human macrophage cell line U937 was cultured in vitro and randomly divided into NC group, LPS group, LPS + pcDNA group, and LPS + pcDNA-MEG3 group. Flow cytometry was applied to detect the apoptosis rate. The levels of IL-1ß and TNF-α were detected by ELISA. Western blot was used to detect the expression of Bax, Bcl-2 and NF-κB signaling pathway-related proteins p65 and p-p65. Results: The expression level of serum MEG3 in the sepsis group was significantly lower than that in the control group (P <0.05). ROC curve analysis showed that the AUC area was 0.856, the sensitivity was 0.700, and the specificity was 0.883. Compared with the NC group, the macrophage apoptosis rate in the LPS group was increased (P <0.05), the levels of Bax and p-p65 protein were significantly increased (P <0.05), and the level of Bcl-2 protein was decreased (P <0.05), the levels of IL-1ß and TNF-α were increased (P <0.05). Compared with the LPS + pcDNA group, the apoptosis rate of the LPS + pcDNA-MEG3 group was significantly reduced (P <0.05), the levels of Bax and p-p65 protein were reduced (P <0.05), and the level of Bcl-2 protein was significantly increased (P <0.05), the levels of IL-1ß and TNF-α were reduced (P <0.05). Conclusion: The low expression of LncRNA MEG3 in the serum of patients with sepsis can predict the occurrence of sepsis. Overexpression of MEG3 can inhibit LPS-induced macrophage apoptosis and secretion of inflammatory factors by inhibiting the activation of the NF-κB signaling pathway.


Assuntos
Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , RNA Longo não Codificante/genética , Sepse/genética , Apoptose/genética , Células Cultivadas , Feminino , Humanos , Interleucina-1beta/genética , Masculino , Pessoa de Meia-Idade , NF-kappa B/genética , Transdução de Sinais/genética , Fator de Transcrição RelA/genética , Fator de Necrose Tumoral alfa/genética
8.
Bioresour Technol ; 302: 122865, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32004814

RESUMO

Fermentative caproate production from wastewater is attractive but is currently limited by the low product purity and concentration. In this work, continuous, selective production of caproate from acetate and ethanol, the common products of wastewater anaerobic fermentation, was achieved in an anaerobic membrane bioreactor (AnMBR). The reactor was continuously operated for over 522 days without need for chemical cleaning. With an ethanol-to-acetate ratio of 3.0, the effluent caproate concentration was 2.62 g/L on average and the caproate ratio in liquid products reached 74%. Further raising the influent ethanol content slightly increased the effluent caproate level but lowered the product selectivity and resulted in microbial inhibition. The Clostridia (the major caproate-producing bacteria) and Methanobacterium species (which consume hydrogen to alleviate microbial inhibition) was significantly enriched in the acclimated sludge. Our results imply a great potential of utilizing AnMBR to recover caproate from the effluent of wastewater acidogenic fermentation process.


Assuntos
Reatores Biológicos , Caproatos , Anaerobiose , Bactérias Anaeróbias , Fermentação
9.
Bioresour Technol ; 297: 122448, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31771810

RESUMO

In this work, a single microbial electrochemical system was developed for multiple goals simultaneously - CO2 reduction, biogas purification, upgrading and sulfur recovery. This system consists of a methanogen-inoculated biocathode for CO2 reduction and a ferrous ion (Fe2+)-mediated abiotic anode for hydrogen sulfide (H2S) oxidation. In the cathodic chamber, methane production rate of 20.6 ± 1.0 µmol·h-1 and high upgrading level (up to 98.3% methane content) were achieved. In the anodic chamber, H2S was completely removed and selectively converted into elemental sulfur particles. The system showed stable performance during continuous operation for treating both pure CO2 and mixed gases, with a cathodic coulombic efficiency of up to 85.2%. This simple system holds a great potential for practical application for biogas upgrading and sulfur recovery from waste water/gases.


Assuntos
Biocombustíveis , Dióxido de Carbono , Metano , Enxofre , Águas Residuárias
10.
Sci Total Environ ; 656: 140-149, 2019 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-30504016

RESUMO

This study investigated the effect of nitrogen (N) and phosphorous (P) stress on the production of DHA or EPA and total fatty acids (TFAs) in the marine microalga Tisochrysis lutea and the freshwater microalga Monodus subterraneus. Five N or P starvation/limitation conditions (N sufficient and P limited, N sufficient and P starved, N starved and P sufficient, N starved and P limited, and N and P starved) and one N and P sufficient condition (control) were studied. The results demonstrated that the proportion of DHA or EPA among TFAs and production in the microalgae suspensions decreased (57%, 73% for N stress and 18%, 51% for P stress, respectively) under N or P stress in both microalgae compared with the N and P sufficient group. Differently, DHA dry weight content of T. lutea decreased significantly, and EPA dry weight content of M. subterraneus decreased slightly under N starved conditions. Clear differences in TFA content/production and the relationship between TFA and DHA or EPA production/content and CO2 fixation were observed between the two microalgae. These results give a new sight on the difference between marine microalgae and freshwater microalgae. Meanwhile, it gave a potential application to produce DHA or EPA and TFA combining with CO2 fixation by these microalgae.


Assuntos
Ácidos Docosa-Hexaenoicos/metabolismo , Ácido Eicosapentaenoico/metabolismo , Microalgas/metabolismo , Nitrogênio/metabolismo , Fósforo/metabolismo , Haptófitas/metabolismo , Nitrogênio/deficiência , Nutrientes/deficiência , Nutrientes/metabolismo , Fósforo/deficiência , Estramenópilas/metabolismo , Estresse Fisiológico
11.
Chemosphere ; 193: 840-846, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29874757

RESUMO

The presence of antibiotics in wastewater has been widely confirmed. Membrane bioreactor (MBR), as an efficient wastewater treatment technology, has attracted increasing interest in its ability to remove antibiotics in recent years. However, its long-term operation stability and the underlying mechanisms for antibiotics removal are still poorly understood. In this study, a hollow fiber MBR was used to treat low concentration sulfamethazine (SMZ) contained wastewater. The long-term effects of various SMZ concentrations on nutrients removal, SMZ degradation, and sludge characteristics were investigated. During the 244 days operation, the overall SMZ removal efficiency could reach 95.4 ± 4.5% under various SMZ concentrations and hydraulic retention times. The reactor exhibited high chemical oxygen demand and NH4+-N removal efficiencies, which reached 93.0% and 96.2%, respectively. A sludge concentration of 4.1 ± 0.3 g/L was maintained in the system without excess sludge discharge. The dosage of SMZ had obvious effect on sludge characteristics. The contents of extracellular polymeric substances (EPS) in MBR decreased after a long-term operation of the reactor under SMZ pressure. The low sludge concentration and the reduced EPS content were also beneficial for mitigating membrane fouling. Thus, this study provides a low-cost, efficient and simple approach to treat SMZ-contained wastewater.


Assuntos
Reatores Biológicos/normas , Sulfametazina/química , Águas Residuárias/química , Purificação da Água/métodos
12.
Bioresour Technol ; 260: 61-67, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29614452

RESUMO

Recovery of volatile fatty acids (VFAs) from wastewater is an important route for wastewater valorization. Selective acidogenic fermentation enables an efficient production of VFAs from wastewater, whereas electrodialysis (ED) provides an effective approach to concentrate VFAs. However, these two processes have not been coupled in one single system previously. In this study, an acidogenesis-ED integrated system that coupled a continuous acidogenesis with a batch process of VFA concentration was developed for recovery of high-concentration VFAs from wastewater. Under 20.0 V voltage, the acetate was concentrated by 4-fold and the propionate and butyrate were concentrated by over 3-fold in the integrated system after 528-h operation. The declined VFAs recovery ratios at the later stage due to significant reverse diffusion indicate a need to prevent product over-accumulation. This work demonstrated the feasibility of the acidogenesis-ED integrated reactor for wastewater valorization and discussed the remaining challenges and opportunities.


Assuntos
Ácidos Graxos Voláteis , Águas Residuárias , Reatores Biológicos , Ácido Butírico , Fermentação , Concentração de Íons de Hidrogênio , Propionatos , Esgotos
13.
Bioresour Technol ; 247: 471-476, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28968568

RESUMO

In this study, a novel electrodialysis membrane bioreactor was used for EBPR sludge treatment for energy and phosphorus resource recovery simultaneously. After 30days stable voltage outputting, the maximum power density reached 0.32W/m3. Over 90% of phosphorus in EBPR sludge was released while about 50% of phosphorus was concentrated to 4mmol/L as relatively pure phosphate solution. Nitrogen could be removed from EBPR sludge by desalination and denitrification processes. This study provides an optimized way treating sludge for energy production and in situ phosphorus recovery.


Assuntos
Reatores Biológicos , Esgotos , Eletricidade , Nitrogênio , Fosfatos , Fósforo
14.
Bioresour Technol ; 248(Pt A): 148-155, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28709885

RESUMO

In this study, a kinetic model was developed based on Anaerobic Digestion Model No. 1 to provide insights into the directed production of acetate and methane from sugar-containing wastewater under low pH conditions. The model sufficiently described the dynamics of liquid-phase and gaseous products in an anaerobic membrane bioreactor by comprehensively considering the syntrophic bioconversion steps of sucrose hydrolysis, acidogenesis, acetogenesis and methanogenesis under acidic pH conditions. The modeling results revealed a significant pH-dependency of hydrogenotrophic methanogenesis and ethanol-producing processes that govern the sucrose fermentative pathway through changing the hydrogen yield. The reaction thermodynamics of such acetate-type fermentation were evaluated, and the implications for process optimization by adjusting the hydraulic retention time were discussed. This work sheds light on the acid-stimulated acetate-type fermentation process and may lay a foundation for optimization of resource-oriented processes for treatment of food wastewater.


Assuntos
Reatores Biológicos , Águas Residuárias , Acetatos , Fermentação , Hidrogênio , Concentração de Íons de Hidrogênio , Metano , Açúcares
15.
Water Res ; 125: 309-317, 2017 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-28866446

RESUMO

Quorum sensing (QS), especially acyl homoserine lactone (AHL)-mediated QS, in activated sludge arouses great interests because of its vital role in the formation of biofilm and aerobic granules (AG). Although QS is reported to be largely related to the properties of activated sludge, it is not economically feasible to tune QS in an activated sludge reactor through dosing pure AHL or AHL hydrolase. A more reasonable way to tune QS is to augment reactors with AHL-producing or -quenching bacteria. In this work, the impacts of continuous dose of AHL-producing or -quenching strains on the activated sludge during its granulation process were explored. Augmentation of AHL-producing or -quenching strains resulted in up- or down-regulation of the AHL concentration in the reactors. Granulation of activated sludge was also accomplished in all reactors, but the granules showed negligible or slight differences in the physicochemical properties of sludge, such as nutrients removal, biomass concentration, extracellular polymeric substances, and zeta potential. Interestingly, a smaller granule size was observed for both the reactor augmented with either an AHL-quenching strain or an AHL-producing strain, suggesting that the AHL augmentation suppressed the biofilm development. Pyrosequencing analysis reveals that the granules cultured in the reactors varied widely in bacterial community structure, indicating that the AHL augmentation had a greater impact on the bacterial community structure, rather than on the physicochemical properties of activated sludge. These results demonstrate that the role of QS in the biofilm formation in complex wastewater treatment bioreactors should be re-evaluated.


Assuntos
Percepção de Quorum , Esgotos/microbiologia , Águas Residuárias/microbiologia , 4-Butirolactona/análogos & derivados , 4-Butirolactona/metabolismo , Bactérias , Fenômenos Fisiológicos Bacterianos , Biofilmes/crescimento & desenvolvimento , Reatores Biológicos/microbiologia , Águas Residuárias/análise
16.
Bioresour Technol ; 222: 24-32, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27697734

RESUMO

In order to relieve the toxicity of furfural on Rhizopus oryzae fermentation, the molecular mechanism of R. oryzae responding to furfural stress for fumaric acid-production was investigated by omics-based approaches. In metabolomics analysis, 29 metabolites including amino acid, sugars, polyols and fatty acids showed significant changes for maintaining the basic cell metabolism at the cost of lowering fumaric acid production. To further uncover the survival mechanism, lipidomics was carried out, revealing that phosphatidylcholine, phosphatidylglycerol, phosphatidylinositol and polyunsaturated acyl chains might be closely correlated with R. oryzae's adapting to furfural stress. Based on the above omics analysis, lecithin, inositol and soybean oil were exogenously supplemented separately with an optimized concentration in the presence of furfural, which increased fumaric acid titer from 5.78g/L to 10.03g/L, 10.05g/L and 12.13g/L (increased by 73.5%, 73.8% and 110%, respectively). These findings provide a methodological guidance for hemicellulose-fumaric acid development.


Assuntos
Fumaratos/metabolismo , Furaldeído/toxicidade , Metabolômica/métodos , Fosfolipídeos/metabolismo , Rhizopus/metabolismo , Estresse Fisiológico/efeitos dos fármacos , Xilose/metabolismo , Análise Discriminante , Fermentação/efeitos dos fármacos , Furaldeído/metabolismo , Espaço Intracelular/metabolismo , Análise dos Mínimos Quadrados , Metaboloma/efeitos dos fármacos , Fatores de Tempo
17.
Sci Rep ; 5: 16281, 2015 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-26541793

RESUMO

Recovering nutrients, especially phosphate resource, from wastewater have attracted increasing interest recently. Herein, an intermittently aerated membrane bioreactor (MBR) with a mesh filter was developed for simultaneous chemical oxygen demand (COD), total nitrogen (TN) and phosphorous removal, followed by phosphorus recovery from the phosphorus-rich sludge. This integrated system showed enhanced performances in nitrification and denitrification and phosphorous removal without excess sludge discharged. The removal of COD, TN and total phosphorus (TP) in a modified MBR were averaged at 94.4 ± 2.5%, 94.2 ± 5.7% and 53.3 ± 29.7%, respectively. The removed TP was stored in biomass, and 68.7% of the stored phosphorous in the sludge could be recovered as concentrated phosphate solution with a concentration of phosphate above 350 mg/L. The sludge after phosphorus release could be returned back to the MBR for phosphorus uptake, and 83.8% of its capacity could be recovered.


Assuntos
Reatores Biológicos , Carbono/isolamento & purificação , Membranas Artificiais , Nitrogênio/isolamento & purificação , Fósforo/isolamento & purificação , Ar , Biofilmes , Esgotos
18.
Chemosphere ; 140: 79-84, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24880609

RESUMO

A novel energy-saving anaerobic hybrid membrane bioreactor (AnHMBR) with mesh filter, which takes advantage of anaerobic membrane bioreactor and fixed-bed biofilm reactor, is developed for low-strength 2-chlorophenol (2-CP)-contained wastewater treatment. In this system, the anaerobic membrane bioreactor is stuffed with granular activated carbon to construct an anaerobic hybrid fixed-bed biofilm membrane bioreactor. The effluent turbidity from the AnHMBR system was low during most of the operation period, and the chemical oxygen demand and 2-CP removal efficiencies averaged 82.3% and 92.6%, respectively. Furthermore, a low membrane fouling rate was achieved during the operation. During the AnHMBR operation, the only energy consumption was for feed pump. And a low energy demand of 0.0045-0.0063kWhm(-3) was estimated under the current operation conditions. All these results demonstrated that this novel AnHMBR is a sustainable technology for treating 2-CP-contained wastewater.


Assuntos
Reatores Biológicos , Clorofenóis/metabolismo , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/química , Poluentes Químicos da Água/metabolismo , Anaerobiose , Biofilmes , Análise da Demanda Biológica de Oxigênio , Carvão Vegetal , Clorofenóis/análise , Conservação de Recursos Energéticos/métodos , Membranas Artificiais , Águas Residuárias/microbiologia , Poluentes Químicos da Água/análise
19.
J Agric Food Chem ; 62(40): 9927-35, 2014 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-25199087

RESUMO

The mixed microbes coculture method in cane molasses wastewater (CMW) was adopted to produce 2-phenylethanol (2-PE). Comparative metabolomics combined with multivariate statistical analysis was performed to profile the differences of overall intracellular metabolites concentration for the mixed microbes cocultured under two different fermentation conditions with low and high 2-PE production. In total 102 intracellular metabolites were identified, and 17 of them involved in six pathways were responsible for 2-PE biosynthesis. After further analysis of metabolites and verification by feeding experiment, an overall metabolic mechanism hypothesis for the microbial mixed cultures (MMC) utilizing CMW for higher 2-PE production was presented. The results demonstrated that the branches of intracellular pyruvate metabolic flux, as well as the flux of phenylalanine, tyrosine, tryptophan, glutamate, proline, leucine, threonine, and oleic acid, were closely related to 2-PE production and cell growth, which provided theoretical guidance for domestication and selection of species as well as medium optimization for MMC metabolizing CMW to enhance 2-PE yield.


Assuntos
Microbiologia Industrial/métodos , Metabolômica/métodos , Melaço , Álcool Feniletílico/metabolismo , Águas Residuárias , Aminoácidos/metabolismo , Reatores Biológicos/microbiologia , Ciclo do Ácido Cítrico , Ácidos Graxos/metabolismo , Fermentação , Via de Pentose Fosfato , Ácido Pirúvico/metabolismo , Ácido Chiquímico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...