Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Ind Microbiol Biotechnol ; 47(8): 573-583, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32885332

RESUMO

γ-Glutamyl compounds have unveiled their importance as active substances or precursors of pharmaceuticals. In this research, an approach for enzymatic synthesis of γ-glutamyl compounds was developed using γ-glutamylmethylamide synthetase (GMAS) from Methylovorus mays and polyphosphate kinase (PPK) from Corynebacterium glutamicum. GMAS and PPK were co-recombined in pETDuet-1 plasmid and co-expressed in E. coli BL21 (DE3), and the enzymatic properties of GMAS and PPK were investigated, respectively. Under the catalysis of the co-expression system, L-theanine was synthesized with 89.8% conversion when the substrate molar ratio of sodium glutamate and ethylamine (1:1.4) and only 2 mM ATP were used. A total of 14 γ-glutamyl compounds were synthesized by this one-pot method and purified by cation exchange resin and isoelectric point crystallization with a yield range from 22.3 to 72.7%. This study provided an efficient approach for the synthesis of γ-glutamyl compounds by GMAS and PPK co-expression system.


Assuntos
Carbono-Nitrogênio Ligases/metabolismo , Corynebacterium glutamicum/enzimologia , Escherichia coli/genética , Glutamatos/biossíntese , Methylophilaceae/enzimologia , Fosfotransferases (Aceptor do Grupo Fosfato)/metabolismo , Carbono-Nitrogênio Ligases/genética , Escherichia coli/enzimologia , Fermentação , Microrganismos Geneticamente Modificados , Ressonância Magnética Nuclear Biomolecular , Fosfotransferases (Aceptor do Grupo Fosfato)/genética
2.
Int J Biol Macromol ; 76: 39-44, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25709013

RESUMO

Laccases are copper-containing enzymes which possess a promising potential in many industrial and environmental applications. Here we describe the cloning, extracellular expression and characterization of a novel non-blue laccase from Bacillus amyloliquefaciens in Pichia pastoris. The recombinant enzyme was secreted into the culture supernatant with high activity. It lacks the absorption band at 610 nm typical for blue laccases. However, electron paramagnetic resonance (EPR) spectrum proved the existence of type 1 copper center that was not detectable in the UV-visible spectrum. Metal content analysis revealed that the enzyme contains two copper ions, one iron ion and one zinc ion per protein molecular, suggesting that it is a novel non-blue laccase. The pH and temperature optima of the recombinant laccase were 6.6 and 60°C, respectively, and it was stable at pH 9.0 for 10 days. The enzyme activity was slightly activated by NaCl with concentration up to 200 mM. The purified laccase showed high efficiency in decolorizing reactive black 5 and indigo carmine, achieving more than 93% decolorization after 1h. The extreme robustness of the recombinant B. amyloliquefaciens laccase offers several advantages over most fungal laccases in various industrial applications.


Assuntos
Bacillus/enzimologia , Lacase/química , Lacase/metabolismo , Bacillus/genética , Estabilidade Enzimática , Expressão Gênica , Concentração de Íons de Hidrogênio , Lacase/genética , Metais/química , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidade por Substrato , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...