Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Cell Physiol ; 234(12): 22921-22934, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31148189

RESUMO

Bax triggers cell apoptosis by permeabilizing the outer mitochondrial membrane, leading to membrane potential loss and cytochrome c release. However, it is unclear if proteasomal degradation of Bax is involved in the apoptotic process, especially in heart ischemia-reperfusion (I/R)-induced injury. In the present study, KPC1 expression was heightened in left ventricular cardiomyocytes of patients with coronary heart disease (CHD), in I/R-myocardium in vivo and in hypoxia and reoxygenation (H/R)-induced cardiomyocytes in vitro. Overexpression of KPC1 reduced infarction size and cell apoptosis in I/R rat hearts. Similarly, the forced expression of KPC1 restored mitochondrial membrane potential (MMP) and cytochrome c release driven by H/R in H9c2 cells, whereas reducing cell apoptosis, and knockdown of KPC1 by short-hairpin RNA (shRNA) deteriorated cell apoptosis induced by H/R. Mechanistically, forced expression of KPC1 promoted Bax protein degradation, which was abolished by proteasome inhibitor MG132, suggesting that KPC1 promoted proteasomal degradation of Bax. Furthermore, KPC1 prevented basal and apoptotic stress-induced Bax translocation to mitochondria. Bax can be a novel target for the antiapoptotic effects of KPC1 on I/R-induced cardiomyocyte apoptosis and render mechanistic penetration into at least a subset of the mitochondrial effects of KPC1.


Assuntos
Doença das Coronárias/genética , Mitocôndrias/genética , Complexos Ubiquitina-Proteína Ligase/genética , Proteína X Associada a bcl-2/genética , Animais , Apoptose/genética , Hipóxia Celular/genética , Sobrevivência Celular/genética , Doença das Coronárias/patologia , Modelos Animais de Doenças , Regulação da Expressão Gênica/genética , Humanos , Potencial da Membrana Mitocondrial/genética , Mitocôndrias/metabolismo , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Proteólise , Ratos , Transdução de Sinais/genética
2.
Stem Cell Res Ther ; 10(1): 70, 2019 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-30819239

RESUMO

AIM: The objective of this study is to determine if exuberant sympathetic nerve activity is involved in muscle satellite cell differentiation and myoblast fusion. METHODS AND RESULTS: By using immunoassaying and western blot analyses, we found that ß1 and ß2-adrenergic receptors (AdR) were expressed in C2C12 cells. The differentiated satellite cells exhibited an increased expression of ß2-AdR, as compared with the proliferating cells. Continuous exposure of isoprenaline (ISO), a ß-AdR agonist, delayed C2C12 cell differentiation, and myoblast fusion in time- and dose-dependent manner. ISO also increased short myotube numbers while decreasing long myotube numbers, consistent with the greater reduction in MyHC1, MyHC2a, and MyHC2x expression. Moreover, continuous exposure of ISO gradually decreased the ratio of PKA RI/RII, and PKA RI activator efficiently reversed the ISO effect on C2C12 cell differentiation and myoblast fusion while PKA inhibitor H-89 deteriorated the effects. Continuous single-dose ISO increased ß1-AdR expression in C2C12 cells. More importantly, the cells showed enhanced phospho-ERK1/2 levels, resulting in increasing phospho-ß2-AdR levels while decreasing ß2-AdR levels, and the specific effects could be abolished by ERK1/2 inhibitor. Furthermore, continuous exposure of ISO induced FOXO1 nuclear translocation and increased the levels of FOXO1 in nuclear extracts while reducing pAKT, p-p38MAPK, and pFOXO1 levels. Conversely, blockade of ERK1/2 signaling partially abrogated ISO effects on AKT, p38MAPK, and FOXO1signaling, which partially restored C2C12 cell differentiation and myoblast fusion, leading to an increase in the numbers of medium myotube along with the increased expression of MyHC1 and MyHC2a. CONCLUSION: Continuous exposure of ISO impedes satellite cell differentiation and myoblast fusion, at least in part, through PKA-ERK1/2-FOXO1 signaling pathways, which were associated with the reduced ß2-AdR and increased ß1-AdR levels.


Assuntos
Agonistas de Receptores Adrenérgicos beta 1/farmacologia , Diferenciação Celular/efeitos dos fármacos , Isoproterenol/farmacologia , Mioblastos/efeitos dos fármacos , Animais , Fusão Celular , Proliferação de Células/efeitos dos fármacos , Proteínas Quinases Dependentes de AMP Cíclico/genética , Proteína Forkhead Box O1/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos , Desenvolvimento Muscular/efeitos dos fármacos , Mioblastos/metabolismo , Cadeias Pesadas de Miosina/genética , Receptores Adrenérgicos beta 1/genética , Receptores Adrenérgicos beta 2/genética
3.
Cell Physiol Biochem ; 48(2): 433-449, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30016789

RESUMO

BACKGROUND/AIMS: Vagus nerve stimulation (VNS) suppresses arrhythmic activity and minimizes cardiomyocyte injury. However, how VNS affects angiogenesis/arteriogenesis in infarcted hearts, is poorly understood. METHODS: Myocardial infarction (MI) was achieved by ligation of the left anterior descending coronary artery (LAD) in rats. 7 days after LAD, stainless-steel wires were looped around the left and right vagal nerve in the neck for vagus nerve stimulation (VNS). The vagal nerve was stimulated with regular pulses of 0.2ms duration at 20 Hz for 10 seconds every minute for 4 hours, and then ACh levels by ELISA in cardiac tissue and serum were evaluated for its release after VNS. Three and 14 days after VNS, Real-time PCR, immunostaining and western blot were respectively used to determine VEGF-A/B expressions and α-SMA- and CD31-postive vessels in VNS-hearts with pretreatment of α7-nAChR blocker mecamylamine (10 mg/kg, ip) or mACh-R blocker atropine (10 mg/kg, ip) for 1 hour. The coronary function and left ventricular performance were analyzed by Langendorff system and hemodynamic parameters in VNS-hearts with pretreatment of VEGF-A/B-knockdown or VEGFR blocker AMG706. Coronary arterial endothelial cells proliferation, migration and tube formation were evaluated for angiogenesis following the stimulation of VNS in coronary arterial smooth muscle cells (VSMCs). RESULTS: VNS has been shown to stimulate VEGF-A and VEGF-B expressions in coronary arterial smooth muscle cells (VSMCs) and endothelial cells (ECs) with an increase of α-SMA- and CD31-postive vessel number in infarcted hearts. The VNS-induced VEGF-A/B expressions and angiogenesis were abolished by m-AChR inhibitor atropine and α7-nAChR blocker mecamylamine in vivo. Interestingly, knockdown of VEGF-A by shRNA mainly reduced VNS-mediated formation of CD31+ microvessels. In contrast, knockdown of VEGF-B powerfully abrogated VNS-induced formation of α-SMA+ vessels. Consistently, VNS-induced VEGF-A showed a greater effect on EC tube formation as compared to VNS-induced VEGF-B. Moreover, VEGF-A promoted EC proliferation and VSMC migration while VEGF-B induced VSMC proliferation and EC migration in vitro. Mechanistically, vagal neurotransmitter acetylcholine stimulated VEGF-A/B expressions through m/nACh-R/PI3K/Akt/Sp1 pathway in EC. Functionally, VNS improved the coronary function and left ventricular performance. However, blockade of VEGF receptor by antagonist AMG706 or knockdown of VEGF-A or VEGF-B by shRNA significantly diminished the beneficial effects of VNS on ventricular performance. CONCLUSION: VNS promoted angiogenesis/arteriogenesis to repair the infracted heart through the synergistic effects of VEGF-A and VEGF-B.


Assuntos
Infarto do Miocárdio/terapia , Estimulação do Nervo Vago , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator B de Crescimento do Endotélio Vascular/metabolismo , Acetilcolina/análise , Acetilcolina/sangue , Animais , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Indóis/farmacologia , Masculino , Microvasos/citologia , Microvasos/efeitos dos fármacos , Microvasos/metabolismo , Músculo Liso Vascular/citologia , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/metabolismo , Infarto do Miocárdio/patologia , Miocárdio/metabolismo , Niacinamida/administração & dosagem , Niacinamida/farmacologia , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores Muscarínicos/química , Receptores Muscarínicos/metabolismo , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Fator A de Crescimento do Endotélio Vascular/genética , Fator B de Crescimento do Endotélio Vascular/antagonistas & inibidores , Fator B de Crescimento do Endotélio Vascular/genética , Receptor Nicotínico de Acetilcolina alfa7/antagonistas & inibidores , Receptor Nicotínico de Acetilcolina alfa7/metabolismo
4.
Biochim Biophys Acta Mol Basis Dis ; 1863(11): 2772-2782, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28693920

RESUMO

S100B is a biomarker of nervous system injury, but it is unknown if it is also involved in vascular injury. In the present study, we investigated S100B function in vascular remodeling following injury. Balloon injury in rat carotid artery progressively induced neointima formation while increasing S100B expression in both neointimal vascular smooth muscle (VSMC) and serum along with an induction of proliferating cell nuclear antigen (PCNA). Knockdown of S100B by its shRNA delivered by adenoviral transduction attenuated the PCNA expression and neointimal hyperplasia in vivo and suppressed PDGF-BB-induced VSMC proliferation and migration in vitro. Conversely, overexpression of S100B promoted VSMC proliferation and migration. Mechanistically, S100B altered VSMC phenotype by decreasing the contractile protein expression, which appeared to be mediated by NF-κB activity. S100B induced NF-κB-p65 gene transcription, protein expression and nuclear translocation. Blockade of NF-κB activity by its inhibitor reversed S100B-mediated downregulation of VSMC contractile protein and increase in VSMC proliferation and migration. It appeared that S100B regulated NF-κB expression through, at least partially, the Receptor for Advanced Glycation End products (RAGE) because RAGE inhibitor attenuated S100B-mediated NF-κB promoter activity as well as VSMC proliferation. Most importantly, S100B secreted from VSMC impaired endothelial tube formation in vitro, and knockdown of S100B promoted re-endothelialization of injury-denuded arteries in vivo. These data indicated that S100B is a novel regulator for vascular remodeling following injury and may serve as a potential biomarker for vascular damage or drug target for treating proliferative vascular diseases.


Assuntos
Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Neointima/metabolismo , Subunidade beta da Proteína Ligante de Cálcio S100/biossíntese , Remodelação Vascular , Animais , Regulação da Expressão Gênica , Músculo Liso Vascular/lesões , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/patologia , Neointima/patologia , Ratos , Ratos Sprague-Dawley , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Fator de Transcrição RelA/metabolismo
5.
Mol Cell Biochem ; 413(1-2): 9-23, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26769665

RESUMO

VEGF-C is a newly identified proangiogenic protein playing an important role in vascular disease and angiogenesis. However, its role in myocardial ischemia/reperfusion (I/R) injury remains unknown. The objective of this study was to determine the role and mechanism of VEGF-C in myocardial ischemia-reperfusion injury. Rat left ventricle myocardium was injected with recombinant human VEGF-C protein (0.1 or 1.0 µg/kg b.w.) 1 h prior to myocardial ischemia-reperfusion (I/R) injury. 24 h later, the myocardial infarction size, the number of TUNEL-positive cardiomyocytes, the levels of creatine kinase (CK), CK-MB, cardiac troponin, malondialdehyde (MDA) content, and apoptosis protein Bax expression were decreased, while Bcl2 and pAkt expression were increased in VEGF-C-treated myocardium as compared to the saline-treated I/R hearts. VEGF-C also improved the function of I/R-injured hearts. In the H2O2-induced H9c2 cardiomyocytes, which mimicked the I/R injury in vivo, VEGF-C pre-treatment decreased the LDH release and MDA content, blocked H2O2-induced apoptosis by inhibiting the pro-apoptotic protein Bax expression and its translocation to the mitochondrial membrane, and consequently attenuated H2O2-induced decrease of mitochondrial membrane potential and increase of cytochrome c release from mitochondria. Mechanistically, VEGF-C activated Akt signaling pathway via VEGF receptor 2, leading to a blockade of Bax expression and mitochondrial membrane translocation and thus protected cardiomyocyte from H2O2-induced activation of intrinsic apoptotic pathway. VEGF-C exerts its cardiac protection following I/R injury via its anti-apoptotic effect.


Assuntos
Cardiotônicos/administração & dosagem , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Miócitos Cardíacos/citologia , Fator C de Crescimento do Endotélio Vascular/administração & dosagem , Animais , Apoptose/efeitos dos fármacos , Cardiotônicos/farmacologia , Linhagem Celular , Modelos Animais de Doenças , Humanos , Peróxido de Hidrogênio/farmacologia , L-Lactato Desidrogenase/metabolismo , Malondialdeído/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Ratos , Ratos Sprague-Dawley , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/farmacologia , Transdução de Sinais/efeitos dos fármacos , Fator C de Crescimento do Endotélio Vascular/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...