Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 674: 128-138, 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38917713

RESUMO

In this study, a combination of ab initio modeling and experimental analysis is presented to investigate and elucidate the electronic conductivity of films composed of conducting polymer blend PEDOT:PSS-PEO. Detailed density functional theory (DFT) calculations, aligned with experimental data, aided at profound understanding of the chemical composition, band structure, and the mechanical behavior of these composite materials. Systematic evaluation across diverse ratios of PEDOT, PSS, and PEO revealed a pronounced transformation in electronic properties. Specifically, the addition of PEO into the polymer matrix remarkably changes the band gap, with a marked alteration observed near a PEO concentration of 52 wt-%. This adjustment led to a substantial enhancement in the electrical conductivity, exhibiting an increase by a factor of approximately 20, compared to the original PEDOT:PSS polymer. The present investigation determined the crucial role of the PEDOT to PSS ratio in band gap determination, emphasizing its significant impact on the material's electrical conductivity. Concurrently, the mechanical property analysis unveiled a consistent increase in Young's modulus, reaching up to 765.93 MPa with increased PEO content, signifying a notable mechanical stiffening of the blend. The obtained combined theoretical and experimental insights illustrate a detailed perspective on the conductivity anomalies observed in PEDOT:PSS-PEO systems, establishing a robust framework for designing highly conducting and mechanically stable polymer blends. This comprehensive approach elucidates the interplay between chemical composition and electronic behavior, offering a strategic pathway for extrusion-based manufacturing techniques such as Direct Ink Writing (DIW).

2.
Sci Rep ; 13(1): 8145, 2023 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-37208411

RESUMO

To compare the effects of two decellularization protocols on the characteristics of fabricated COrnea Matrix (COMatrix) hydrogels. Porcine corneas were decellularized with Detergent (De) or Freeze-Thaw (FT)-based protocols. DNA remnant, tissue composition and α-Gal epitope content were measured. The effect of α-galactosidase on α-Gal epitope residue was assessed. Thermoresponsive and light-curable (LC) hydrogels were fabricated from decellularized corneas and characterized with turbidimetric, light-transmission and rheological experiments. The cytocompatibility and cell-mediated contraction of the fabricated COMatrices were assessed. Both protocols reduced the DNA content to < 0.1 µg/mg (native, > 0.5 µg/mg), and preserved the collagens and glycosaminoglycans. The α-Gal epitope remnant decreased by > 50% following both decellularization methods. We observed more than 90% attenuation in α-Gal epitope after treatment with α-galactosidase. The thermogelation half-time of thermoresponsive COMatrices derived from De-Based protocol (De-COMatrix) was 18 min, similar to that of FT-COMatrix (21 min). The rheological characterizations revealed significantly higher shear moduli of thermoresponsive FT-COMatrix (300.8 ± 22.5 Pa) versus De-COMatrix 178.7 ± 31.3 Pa, p < 0.01); while, this significant difference in shear moduli was preserved after fabrication of FT-LC-COMatrix and De-LC-COMatrix (18.3 ± 1.7 vs 2.8 ± 2.6 kPa, respectively, p < 0.0001). All thermoresponsive and light-curable hydrogels have similar light-transmission to human corneas. Lastly, the obtained products from both decellularization methods showed excellent in vitro cytocompatibility. We found that FT-LC-COMatrix was the only fabricated hydrogel with no significant cell-mediated contraction while seeded with corneal mesenchymal stem cells (p < 0.0001). The significant effect of decellularization protocols on biomechanical properties of hydrogels derived from porcine corneal ECM should be considered for further applications.


Assuntos
Hidrogéis , Engenharia Tecidual , Suínos , Animais , Humanos , Engenharia Tecidual/métodos , Hidrogéis/química , alfa-Galactosidase , Matriz Extracelular/química , Córnea/química , Epitopos/análise , DNA/análise , Alicerces Teciduais/química
3.
ACS Appl Mater Interfaces ; 14(39): 44782-44791, 2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-36129474

RESUMO

With the recent threat of climate change and global warming, ensuring access to safe drinking water is a great challenge in many areas worldwide. Designing functional materials for capturing water from natural resources like fog and mist has become one of the key research areas to maximize the production of clean water. From this aspect, nature is a great source for designing bioinspired functional materials as some of the plant leaves and animal exoskeletons can harness water and then store it to save themselves from arid, xeric conditions. Inspired by the Stenocara beetle, we have designed a composite surface structure with periodic islands made of aluminum microparticles surrounded by poly(dimethylenesiloxane) (PDMS). An acoustic tweezer-based method was used to fabricate the bioinspired composite structures, where surface acoustic waves at specific frequencies and amplitudes are applied to align the microparticles as islands in the polymer matrix. An oxygen plasma etching step was applied to expose the microparticles on the PDMS surface. The average water harvesting efficiencies for structures made with 120 and 80 kHz acoustic frequencies and 1 hour etching time were found to be 9.41 and 8.84 g cm-2 h-1, respectively. The acoustically patterned biomimetic composite surface showed higher water harvesting efficiency compared with completely hydrophobic PDMS and hydrophilic aluminum surfaces, demonstrating the advantages of the bioinspired composite material design and acoustic-assisted manufacturing technique. The biomimetic fog water harvesting material is a promising avenue to fulfill the demand for a cost-effective, sustainable, and energy-efficient solution to safe drinking water.


Assuntos
Besouros , Água Potável , Acústica , Alumínio , Animais , Biomimética , Oxigênio , Polímeros , Vapor
4.
Adv Funct Mater ; 32(24)2022 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-35692510

RESUMO

Corneal injuries are a major cause of blindness worldwide. To restore corneal integrity and clarity, there is a need for regenerative bio-integrating materials for in-situ repair and replacement of corneal tissue. Here, we introduce Light-curable COrnea Matrix (LC-COMatrix), a tunable material derived from decellularized porcine cornea extracellular matrix containing un-denatured collagen and sulfated glycosaminoglycans. It is a functionalized hydrogel with proper swelling behavior, biodegradation, and viscosity that can be cross-linked in situ with visible light, providing significantly enhanced biomechanical strength, stability, and adhesiveness. Cross-linked LC-COMatrix strongly adheres to human corneas ex vivo and effectively closes full-thickness corneal perforations with tissue loss. Likewise, in vivo, LC-COMatrix seals large corneal perforations, replaces partial-corneal stromal defects and bio-integrates into the tissue in rabbit models. LC-COMatrix is a natural ready-to-apply bio-integrating adhesive that is representative of native corneal matrix with potential applications in corneal and ocular surgeries.

5.
Soft Robot ; 9(1): 1-13, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-33275498

RESUMO

Soft robots can outperform traditional rigid robots in terms of structural compliance, enhanced safety, and efficient locomotion. However, it is still a grand challenge to design and efficiently manufacture soft robots with multimodal locomotion capability together with multifunctionality for navigating in dynamic environments and meanwhile performing diverse tasks in real-life applications. This study presents a 3D-printed soft robot, which has spatially varied material compositions (0-50% particle-polymer weight ratio), multiscale hierarchical surface structures (10 nm, 1 µm, and 70 µm features on 5 mm wide robot footpads), and consists of functional components for multifunctionality. A novel additive manufacturing process, magnetic-field-assisted projection stereolithography (M-SL), is innovated to fabricate the proposed robot with prescribed material heterogeneity and structural hierarchy, and hence locally engineered flexibility and preprogrammed functionality. The robot incorporates untethered magnetic actuation with superior multimodal locomotion capabilities for completing tasks in harsh environments, including effective load carrying (up to ∼30 times of its own weight) and obstacle removing (up to 6.5 times of its own weight) in congested spaces (e.g., 5 mm diameter glass tube, gastric folds of a pig stomach) by gripping or pushing objects (e.g., 0.3-8 times of its own weight with a velocity up to 31 mm/s). Furthermore, the robot footpads are covered by multiscale hierarchical spike structures with features spanning from nanometers (e.g., 10 nm) to millimeters. Such high structural hierarchy enables multiple superior functions, including changing a naturally hydrophilic surface to hydrophobic, hairy adhesion, and excellent cell attaching and growth properties. It is found that the hairy adhesion and the engineered hydrophobicity of the robot footpad enable robust navigation in wet and slippery environments. The multimaterial multiscale robot design and the direct digital manufacturing method enable complex and versatile robot behaviors in sophisticated environments, facilitating a wide spectrum of real-life applications.


Assuntos
Biomimética , Robótica , Animais , Locomoção , Campos Magnéticos , Impressão Tridimensional , Suínos
6.
ACS Nanosci Au ; 2(4): 297-306, 2022 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-37102063

RESUMO

The use of polymer electrolytes is of great interest for lithium-metal batteries (LMBs) due to their stability with lithium metal. However, the low thermal conductivity of polymer electrolytes poses a significant barrier to minimizing the formation of local hot spots during electrochemical reactions in lithium batteries that may lead to dendritic plating of Li or thermal runaway events. Electrolyte nanocomposites with proper distribution of thermally conductive nanomaterials offer an opportunity to address this shortcoming. Utilizing a custom-designed direct ink writing (DIW) process, we show that highly aligned boron nitride (BN) nanosheets can be embedded in poly(vinylidene fluoride-hexafluoropropylene) (PVdF) polymer composite electrolytes (CPE-BN), enabling novel architectural designs for safe Li-metal batteries. It is observed that the CPE-BN electrolytes possess a 400% increase in their in-plane thermal conductivity, which enables faster heat distribution in the CPE-BN electrolyte compared to the polymer electrolytes without BN nanosheets. The CPE-BN containing symmetric lithium cell exhibits stable Li plating/stripping for over 2000 cycles without short-circuiting due to the suppression of dendritic lithium. The lithium-ion half-cells made with the CPE-BN show stable cycling performance at 1C charge-discharge rate for 250 cycles with 90% capacity retention. This reported DIW-printed PVdF composite polymer electrolyte could be used as a model for developing new architectures for other electrolytes or electrodes, thus enabling new chemistry and improved performances in energy-storage devices.

7.
J Mech Behav Biomed Mater ; 119: 104483, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33838445

RESUMO

Magnetic Resonance Elastography (MRE) is a non-invasive imaging method to quantitatively map the shear viscoelastic properties of soft tissues. In this study, Embedded Direct Ink Writing is used to fabricate a muscle mimicking anisotropic phantom that may serve as a standard for imaging studies of anisotropic materials. The technique allowed us to obtain a long shelf life silicone-based phantom expressing transverse isotropic mechanical properties. Another goal of the present investigation is to introduce a torsionally-polarized, radially-converging shear wave actuation method for MRE. The implemented design for this novel setup was first validated via its application to isotropic and homogeneous gelatin phantoms. Then, a comparison of the resulting complex wave images from axially- and torsionally-polarized MRE on the developed anisotropic phantom and on a skeletal muscle murine sample is presented, highlighting the value of using multiple actuation and motion encoding polarization directions when studying anisotropic materials.


Assuntos
Técnicas de Imagem por Elasticidade , Animais , Elasticidade , Tinta , Imageamento por Ressonância Magnética , Camundongos , Imagens de Fantasmas , Redação
8.
Tissue Eng Part C Methods ; 27(5): 307-321, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33813860

RESUMO

Fabricating thermoresponsive hydrogels from decellularized tissues is a trending and promising approach to develop novel biomaterials for tissue engineering and therapeutic purposes. There are differences in the characteristics of the produced hydrogels related to the source tissue as well as the decellularization and solubilization protocols used. Detailed characterization of the hydrogels will support the efforts to optimize their application as biomaterials for tissue engineering and therapeutics. Here, we describe an optimized method for fabricating an in situ thermoresponsive hydrogel from decellularized porcine cornea extracellular matrix (COMatrix), and provide a detailed characterization of its structure, thermoresponsive rheological behavior (heat-induced sol-gel transition), as well as exploring its protein composition using proteomics. COMatrix forms a transparent gel (10-min time to gelation) after in situ curing with heat, characterized by alteration in light absorbance and rheological indexes. The rheological characterization of heat-formed COMatrix gel shows similar behavior to common biomaterials utilized in tissue engineering. The fibrillar structure of COMatrix gel was observed by scanning electron microscopy showing that the density of fibers attenuates in lower concentrations. Mass spectrometry-based proteomic analysis revealed that COMatrix hydrogel is rich in proteins with known regenerative properties such as lumican, keratocan, and laminins in addition to structural collagen proteins (Data is available via ProteomeXchange with identifier PXD020606). COMatrix hydrogel is a naturally driven biomaterial with favorable biomechanical properties and protein content with potential application as a therapeutic biomaterial in ocular regeneration and tissue engineering. Impact statement Fabrication and application of decellularized porcine corneal extracellular matrix is an emerging approach for corneal tissue engineering and regeneration. There are several protocols for decellularization of porcine cornea with various efficiencies. Here, we are presenting an optimized protocol for decellularization of porcine cornea followed by fabrication of a thermoresponsive hydrogel from the decellularized cornea matrix. Moreover, the fabricated hydrogel was rheologically and compositionally characterized as crucial features to be employed for further application of this hydrogel in corneal tissue engineering and regeneration.


Assuntos
Hidrogéis , Proteômica , Animais , Córnea , Matriz Extracelular , Suínos , Engenharia Tecidual
9.
ACS Appl Mater Interfaces ; 12(37): 42357-42368, 2020 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-32815365

RESUMO

Natural organisms provide inspirations for various functional structures and surfaces with significant applications in multidisciplinary fields. These biological systems are generally composed of multiscale surface structures with high geometric complexity and a variety of materials, making it challenging to replicate their characteristics in engineering. This study presents a novel multiscale multimaterial 3D printing method, magnetic field-assisted stereolithography (M-SL), for fabricating hierarchical particle-polymer structures with surface features ranging from a few nanometers to millimeters or even centimeters. Taking inspiration from nature, this study describes the design and fabrication of a bioinspired multiscale hierarchical surface structure, which is characterized of microscale cones, nanoscale pores, and surface wrinkles at a few nanometers. To understand the fundamental physics underlying the hierarchical surface structure fabrication in the proposed M-SL process, the complexities among the M-SL process parameters, material parameters, and printed geometries are discussed. The accuracy of the developed printing method is investigated by comparing the printed geometries and digital designs. Effects of the printed hierarchical surface structure on hydrophobicity and cell viability were characterized and discussed. It was found that the highly hierarchical surface structure changed the polymer composite surface from hydrophilic (contact angle: ∼38°) to hydrophobic (∼146°). In addition, the hierarchical surface structure also created a better environment for cell attachment and growth, with 900% more living cells at 72 h after cell seeding, compared with cells on the nonstructured smooth surface. Local and selective cell seeding can also be enabled by the surface structure design. Experimental results validated the effectiveness of the M-SL 3D printing method on fabricating multimaterial functional objects with hierarchically structured surfaces for a wide spectrum of applications.


Assuntos
Células Endoteliais/química , Nanopartículas de Magnetita/química , Polímeros/química , Sobrevivência Celular , Células Endoteliais/citologia , Humanos , Interações Hidrofóbicas e Hidrofílicas , Campos Magnéticos , Tamanho da Partícula , Impressão Tridimensional , Estereoisomerismo , Propriedades de Superfície
10.
3D Print Addit Manuf ; 7(4): 163-169, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-36654925

RESUMO

Although continuous projection Stereolithography (SL) printing is one of the next-generation ultra-fast additive manufacturing (AM) processes, its current constrained window design of the resin vat is suffering from many challenges, such as the complex control mechanism and limited hardware lifetime. In this article, we investigate a novel constrained window design, namely Island Window (IW), for the continuous three-dimensional (3D) printing by using the projection SL process. The proposed IW window has a highly oxygen-permeable polydimethylsiloxane membrane onto the laser-machined acrylic vat frame, which allows the formation of an effective liquid interface (>200 µm oxygen inhibition layer) to enable the continuous projection SL process. Experimental results verified the feasibility of the window design for extending the maximum printing time (increased by up to 73%) due to the enhanced oxygen concentration. It was also found that the maximum printing speed for producing parts with a smooth surface (Rz <30 µm) can be as high as 90 mm/h, which is comparable to the speeds in recently reported continuous SL processes. In addition, a variety of parts were successfully fabricated through continuous 3D printing by using the proposed IW design, implying tremendous promise for future low-cost, high-resolution, easy-controlled, and ultra-fast AM processes.

11.
Soft Robot ; 6(3): 333-345, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30720388

RESUMO

In the field of robotics, researchers are aiming to develop soft or partially soft bodied robots that utilize the motion and control system of various living organisms in nature. These robots have the potential to be robust and versatile, even safer for human interaction compared to traditional rigid robots. Soft robots based on biomimetic principles are being designed for real life applications by paying attention to different shape, geometry, and actuation systems in these organisms that respond to surrounding environments and stimuli. Especially, caterpillars or inchworms have garnered attention due to their soft compliant structure and crawling locomotion system making them ideal for maneuvering in congested spaces as a transport function. Currently, there are two major challenges with design and fabrication of such soft robots: using an efficient actuation system and developing a simple manufacturing process. Different actuation systems have been explored, which include shape memory alloy based coils and hydraulic and pneumatic actuators. However, the intrinsic limitations due to overall size and control system of these actuators prevent their integration in flexibility, lightweight, and compact manner, limiting practical and untethered applications. In comparison, magnetic actuation demonstrates simple wireless noncontact control. In terms of manufacturing process, additive manufacturing has emerged as an effective tool for obtaining structural complexity with high resolution, accuracy, and desired geometry. This study proposes a fully three-dimensional (3D) printed, monolithic, and tetherless inchworm-inspired soft robot that uses magnetic actuation for linear locomotion and crawling. Its structure is multimaterial heterogeneous particle-polymer composite with locally programmed material compositions. This soft robot is directly printed in one piece from a 3D computer model, without any manual assembly or complex processing steps, and it can be controlled by an external wireless force. This article presents its design and manufacturing with the novel magnetic field assisted projection stereolithography technique. Analytical models and numerical simulations of the crawling locomotion of the soft robot are also presented and compared with the experimental results of the 3D printed prototype. The overall locomotion mechanism of the magnetically actuated soft robot is evaluated with friction tests and stride efficiency analysis.

12.
Adv Mater ; 30(39): e1800615, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30132998

RESUMO

While 3D printing of rechargeable batteries has received immense interest in advancing the next generation of 3D energy storage devices, challenges with the 3D printing of electrolytes still remain. Additional processing steps such as solvent evaporation were required for earlier studies of electrolyte fabrication, which hindered the simultaneous production of electrode and electrolyte in an all-3D-printed battery. Here, a novel method is demonstrated to fabricate hybrid solid-state electrolytes using an elevated-temperature direct ink writing technique without any additional processing steps. The hybrid solid-state electrolyte consists of solid poly(vinylidene fluoride-hexafluoropropylene) matrices and a Li+ -conducting ionic-liquid electrolyte. The ink is modified by adding nanosized ceramic fillers to achieve the desired rheological properties. The ionic conductivity of the inks is 0.78  × 10 -3 S cm-1 . Interestingly, a continuous, thin, and dense layer is discovered to form between the porous electrolyte layer and the electrode, which effectively reduces the interfacial resistance of the solid-state battery. Compared to the traditional methods of solid-state battery assembly, the directly printed electrolyte helps to achieve higher capacities and a better rate performance. The direct fabrication of electrolyte from printable inks at an elevated temperature will shed new light on the design of all-3D-printed batteries for next-generation electronic devices.

13.
ACS Appl Mater Interfaces ; 9(34): 28433-28440, 2017 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-28782923

RESUMO

The ability to print fully packaged integrated energy storage components (e.g., supercapacitors) is of critical importance for practical applications of printed electronics. Due to the limited variety of printable materials, most studies on printed supercapacitors focus on printing the electrode materials but rarely the full-packaged cell. This work presents for the first time the printing of a fully packaged single-wall carbon nanotube-based supercapacitor with direct ink writing (DIW) technology. Enabled by the developed ink formula, DIW setup, and cell architecture, the whole printing process is mask free, transfer free, and alignment free with precise and repeatable control on the spatial distribution of all constituent materials. Studies on cell design show that a wider electrode pattern and narrower gap distance between electrodes lead to higher specific capacitance. The as-printed fully packaged supercapacitors have energy and power performances that are among the best in recently reported planar carbon-based supercapacitors that are only partially printed or nonprinted.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...