Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Integr Plant Biol ; 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38607264

RESUMO

Drought stress is a crucial environmental factor that limits plant growth, development, and productivity. Autophagy of misfolded proteins can help alleviate the damage caused in plants experiencing drought. However, the mechanism of autophagy-mediated drought tolerance in plants remains largely unknown. Here, we cloned the gene for a maize (Zea mays) selective autophagy receptor, NEXT TO BRCA1 GENE 1 (ZmNBR1), and identified its role in the response to drought stress. We observed that drought stress increased the accumulation of autophagosomes. RNA sequencing and reverse transcription-quantitative polymerase chain reaction showed that ZmNBR1 is markedly induced by drought stress. ZmNBR1 overexpression enhanced drought tolerance, while its knockdown reduced drought tolerance in maize. Our results established that ZmNBR1 mediates the increase in autophagosomes and autophagic activity under drought stress. ZmNBR1 also affects the expression of genes related to autophagy under drought stress. Moreover, we determined that BRASSINOSTEROID INSENSITIVE 1A (ZmBRI1a), a brassinosteroid receptor of the BRI1-like family, interacts with ZmNBR1. Phenotype analysis showed that ZmBRI1a negatively regulates drought tolerance in maize, and genetic analysis indicated that ZmNBR1 acts upstream of ZmBRI1a in regulating drought tolerance. Furthermore, ZmNBR1 facilitates the autophagic degradation of ZmBRI1a under drought stress. Taken together, our results reveal that ZmNBR1 regulates the expression of autophagy-related genes, thereby increasing autophagic activity and promoting the autophagic degradation of ZmBRI1a under drought stress, thus enhancing drought tolerance in maize. These findings provide new insights into the autophagy degradation of brassinosteroid signaling components by the autophagy receptor NBR1 under drought stress.

2.
Front Plant Sci ; 15: 1336689, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38371403

RESUMO

Pectin methylesterase (PME), a family of enzymes that catalyze the demethylation of pectin, influences seed germination. Phytohormone abscisic acid (ABA) inhibits seed germination. However, little is known about the function of PMEs in response to ABA-mediated seed germination. In this study, we found the role of PME31 in response to ABA-mediated inhibition of seed germination. The expression of PME31 is prominent in the embryo and is repressed by ABA treatment. Phenotype analysis showed that disruption of PME31 increases ABA-mediated inhibition of seed germination, whereas overexpression of PME31 attenuates this effect. Further study found that ABI5, an ABA signaling bZIP transcription factor, is identified as an upstream regulator of PME31. Genetic analysis showed that PME31 functions downstream of ABI5 in ABA-mediated seed germination. Detailed studies showed that ABI5 directly binds to the PME31 promoter and inhibits its expression. In the plants, PME31 expression is reduced by ABI5 in ABA-mediated seed germination. Taken together, PME31 is transcriptionally inhibited by ABI5 and negatively regulates ABA-mediated seed germination inhibition. These findings shed new light on the mechanisms of PMEs in response to ABA-mediated seed germination.

3.
J Exp Bot ; 72(8): 3155-3167, 2021 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-33571996

RESUMO

Chlorophylls function in photosynthesis, and are critical to plant developmental processes and responses to environmental stimuli. Chlorophyll b is synthesized from chlorophyll a by chlorophyll a oxygenase (CAO). Here, we characterize a yellow-green leaf (ygl) mutant and identify the causal gene which encodes a chlorophyll a oxygenase in maize (ZmCAO1). A 51 bp Popin transposon insertion in ZmCAO1 strongly disrupts its transcription. Low enzyme activity of ZmCAO1 leads to reduced concentrations of chlorophyll a and chlorophyll b, resulting in the yellow-green leaf phenotype of the ygl mutant. The net photosynthetic rate, stomatal conductance, and transpiration rate are decreased in the ygl mutant, while concentrations of δ-aminolevulinic acid (ALA), porphobilinogen (PBG) and protochlorophyllide (Pchlide) are increased. In addition, a ZmCAO1 mutation results in down-regulation of key photosynthetic genes, limits photosynthetic assimilation, and reduces plant height, ear size, kernel weight, and grain yield. Furthermore, the zmcao1 mutant shows enhanced reactive oxygen species production leading to sensitivity to waterlogging. These results demonstrate the pleiotropy of ZmCAO1 function in photosynthesis, grain yield, and waterlogging tolerance in maize.


Assuntos
Inundações , Oxigenases/genética , Proteínas de Plantas/genética , Zea mays , Clorofila , Clorofila A , Fotossíntese , Folhas de Planta , Sementes/crescimento & desenvolvimento , Zea mays/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...