Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Catal Today ; 358(1): 324-332, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33424117

RESUMO

A novel porous ceramic sheet supported nickel particles reactor was obtained by an in-situ preparation method. This reactor was then used to investigate continuous-flow catalysis of nitroaromatic compounds and methyl orange. The details of the structure and morphology were characterized by XRD, SEM, XPS, Raman, element mapping, mercury intrusion method and Archimedes principle. The porous ceramic sheet supported Ni particles reactor exhibited excellent catalytic performance in the catalytic reduction of p-nitrophenol and methyl orange by sodium borohydride at room temperature. Both the conversion of p-nitrophenol (5 mM) and methyl orange (0.3 mM) reached nearly 100% at the injection speed of 2.67 mL·min-1. In addition, it maintained conversions of 100% after 10 recycling time since the porous ceramic sheet could reduce the aggregation for Ni particles. Furthermore, the chemisorbed oxygen, and the strong interaction between Ni and porous ceramic sheet resulted in a highly efficient, recoverable, and cost-effective multifunctional reactor. All of these advantages present new opportunities to be implemented in the field of waste water treatment and environmental toxicology. Ultimately, the porous ceramic sheet could also support other metal nanomaterial, and used in other fields of environmental catalysis.

2.
ACS Omega ; 5(51): 33357-33371, 2020 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-33403298

RESUMO

In this study, anatase TiO2-supported cerium, manganese, and ruthenium mixed oxides (CeO x -MnO x -RuO x /TiO2; CMRT catalysts) were synthesized at different calcination temperatures via conventional impregnation methods and used for selective catalytic reduction (SCR) of NO x with NH3. The effect of calcination temperature on the structure, redox properties, activation performance, surface-acidity properties, and catalytic properties of the CMRT catalysts was investigated. The results show that the CMRT catalyst calcined at 350 °C exhibits the most efficient low-temperature (<120 °C) denitration activity. Moreover, the selective catalytic oxidation (SCO) reaction of ammonia is intensified when the reaction temperature is >200 °C, which leads to a decrease in the N2 selectivity of the CMRT catalysts and further results in an increase in the production of NO and N2O byproducts. X-ray photoelectron spectroscopy and in situ diffuse reflectance infrared Fourier transform spectroscopy show that the CMRT catalyst calcined at 350 °C contains more Ce4+, Mn4+, Ru4+, and lattice oxygen, which greatly improve the catalyst's ability to activate NO that promotes the NH3-SCR reaction. The Ru n+ sites of the CMRT catalyst calcined at 250 °C are the competitive adsorption sites of NO and NH3 molecules, while those of the CMRT catalyst calcined at 350 and 450 °C are active sites. Both the Langmuir-Hinshelwood (L-H) mechanism and the Eley-Rideal (E-R) mechanism occur on the surface of the CMRT catalyst at the low reaction temperature (100 °C).

3.
Catal Today ; 327: 279-287, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-31007386

RESUMO

A series of TiO2 catalyst carriers with ceria additives were prepared by a precipitation method and tested for selective catalytic reduction (SCR) of NO by NH3. These samples were characterized by XRD, N2-BET, NH3-TPD, H2-TPR, TEM, XPS and in situ DRIFTS, respectively. Results showed that the appropriate addition of ceria can enhance the catalytic activity and thermostability of TiO2 catalyst carriers significantly. The maximum catalytic activity of Ti-Ce-Ox-500 is 98.5% at 400 °C with a GHSV of 100 000 h-1 and the high catalytic activity still remains even after the treatment at high temperature for 24 h. The high catalytic performance of Ti-Ce-Ox-500 can be attributed to a series of superior properties, such as larger specific surface area, more Brønsted acid sites, more hydrogen consumption, and the higher proportion of chemisorbed oxygen. Ceria atoms can inhibit the crystalline grain growth and the collapse of small channels caused by high temperatures. Furthermore, in situ DRIFTS in different feed gases show that the SCR reaction over Ti-Ce-Ox-500 follows both E-R and L-H mechanisms.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...