Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancers (Basel) ; 13(6)2021 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-33801001

RESUMO

(1) Background: Lung cancer is silent in its early stages and fatal in its advanced stages. The current examinations for lung cancer are usually based on imaging. Conventional chest X-rays lack accuracy, and chest computed tomography (CT) is associated with radiation exposure and cost, limiting screening effectiveness. Breathomics, a noninvasive strategy, has recently been studied extensively. Volatile organic compounds (VOCs) derived from human breath can reflect metabolic changes caused by diseases and possibly serve as biomarkers of lung cancer. (2) Methods: The selected ion flow tube mass spectrometry (SIFT-MS) technique was used to quantitatively analyze 116 VOCs in breath samples from 148 patients with histologically confirmed lung cancers and 168 healthy volunteers. We used eXtreme Gradient Boosting (XGBoost), a machine learning method, to build a model for predicting lung cancer occurrence based on quantitative VOC measurements. (3) Results: The proposed prediction model achieved better performance than other previous approaches, with an accuracy, sensitivity, specificity, and area under the curve (AUC) of 0.89, 0.82, 0.94, and 0.95, respectively. When we further adjusted the confounding effect of environmental VOCs on the relationship between participants' exhaled VOCs and lung cancer occurrence, our model was improved to reach 0.92 accuracy, 0.96 sensitivity, 0.88 specificity, and 0.98 AUC. (4) Conclusion: A quantitative VOCs databank integrated with the application of an XGBoost classifier provides a persuasive platform for lung cancer prediction.

2.
J Am Chem Soc ; 133(43): 17152-5, 2011 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-21939264

RESUMO

Adenosylcobalamin- and pyridoxal-5'-phosphate-dependent lysine 5,6-aminomutase utilizes free radical intermediates to mediate 1,2-amino group rearrangement, during which an elusive high-energy aziridincarbinyl radical is proposed to be central in the mechanism of action. Understanding how the enzyme participates in stabilizing any of the radical intermediates is fundamentally significant. Y263F mutation abolished the enzymatic activity. With isotope-edited EPR methods, the roles of the Tyr263α residue in the putative active site are revealed. The Tyr263α residue stabilizes a radical intermediate, which most likely is the aziridincarbinyl radical, either by acting as a spin-relay device or serving as an anchor for the pyridine ring of pyridoxal-5'-phosphate through aromatic π-stacking interactions during spin transfer. The Tyr263α residue also protects the radical intermediate from interception by molecular oxygen. This study supports the proposed reaction mechanism, including the aziridincarbinyl radical, which has eluded detection for more than two decades.


Assuntos
Transferases Intramoleculares/metabolismo , Tirosina/metabolismo , Cristalografia por Raios X , Espectroscopia de Ressonância de Spin Eletrônica , Radicais Livres/química , Radicais Livres/metabolismo , Transferases Intramoleculares/química , Modelos Moleculares , Estrutura Molecular , Estereoisomerismo , Tirosina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...