Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 951: 175590, 2024 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-39159692

RESUMO

Strong upwards transport of Nitrous acid (HONO) in daytime over urban area of Beijing was observed based on combined observations of HONO, NOx (NO and NO2), nitrate, and PM2.5 at two heights (90 m and 528 m) on the highest building of Beijing (528 m above ground). The mean HONO at the 528 m (0.26 ppb) was lower than that at the 90 m (0.54 ppb), and a clear difference in diurnal variation of HONO between the two heights was observed. HONO at the 90 m showed two peaks in the morning rush hour and mid-night, but decreased sharply in daytime (e.g., from 0.62 ppb at 08:00 to 0.34 at 14:00); while the decreasing trend of HONO in daytime significantly weakened at the 528 m (e.g., from 0.26 ppb at 08:00 to 0.27 at 14:00).With PBL development in the morning, HONO in low layer was upwards transported to the 528 m, which compensated partly HONO loss via photolysis and resulted in a relatively stable concentration at the 528 m in daytime. A positive relationship of the bulk Richardson number (Ri) in 0-500 m with the difference of HONO between the two heights during daytime (08:00-18:00) confirmed the above analyses. HONO budget analysis indicated that a strong unknown HONO source existed at the 528 m in daytime, which was negative correlated to the Ri. These results further confirmed that vertical transport of HONO from low layer was a potential HONO source at the 528 m. Moreover, the contribution of photolysis of particulate nitrate significantly increased at the 528 m. Its contribution in total HONO sources increased from 11.9 % at the 90 m to 16.0 % at the 528 m.

2.
Sci Total Environ ; 915: 170039, 2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38219998

RESUMO

High mass concentration of organic aerosol (OA) and its fraction in PM2.5 (particle matter with radius <2.5 µm) were observed in the low layer over a rural site of the North China Plain (NCP) in winter 2018. The mass fraction of OA in PM2.5 was 65.5 % at ground level (5 m above ground), and decreased to 37.1 % in layer of 200-1000 m. In addition, there was a sharp decrease of OA at around the top of planetary boundary layer (PBL), which was distinctly different from the vertical distributions of secondary inorganic aerosols (SIA, e.g., nitrate (NO3-), ammonium (NH4+), and sulfate (SO42-)). The altitude with sharp decrease of OA was very low in the morning and evening, e.g., the sharp decrease of OA occurred at a height <50 m at nighttime on Dec. 19, while was elevated in the noon with the PBL development. Furthermore, OA at ground level exhibited a distinct diurnal variation with a night-to-day ratio of 2.3, which was much larger than those of SIA and inactive CO. All the above results indicated the extremely high OA concentration at the rural site was mainly attributed to direct emission from local sources, such as the combustion of coal and biomass for heating. The extremely high OA could be expected in vest rural areas of the NCP in winter because the farmer activities are very similar to the investigated rural site, underscoring the urgency to mitigate OA emission in rural area for improving the local as well as the regional air quality.

3.
Sci Total Environ ; 859(Pt 1): 160230, 2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36395839

RESUMO

In March 2021, China experienced three dust events (Dust-1, 2, 3), especially the first of which was reported as the strongest one in recent ten years. Their environmental impacts have received great attention, demanding comprehensive study to assess such impacts quantitatively. Multiple advanced measurement methods, including satellite, ground-based lidar, online aerosol speciation instrument, and biogeochemical Argo float, were applied to examine and compare the transport paths, optical and chemical properties, and impacts of these three dust events on urban air quality and marine ecosystem. The results showed that Dust-1 exhibited the largest impacts on urban area, increasing PM10 concentration in Beijing, Shuozhou, and Shijiazhuang up to 7525, 3819, and 2992 µg m-3, respectively. However, due to fast movement of the Mongolian low-pressure cyclone, the duration of northwest wind over the land was quite short (e.g., only 10 h in Beijing), which prevented the transport of dust plume to the northwestern Pacific, resulting in limited impact on the ocean. Dust-2 and Dust-3, though weaker in intensity, were transported directly to the sea, and led to a substantial increase in chlorophyll-a concentration (up to near 3 times) in the northwestern Pacific, comparing to climatological value. This indicates that the impacts of dust events on ocean was not necessarily and positively correlated to their impacts on land. Based on the analyses of land-ocean-space integrated observational data and synoptic systems, this study examined how marine ecosystem responded to three significant Asian dust events in spring 2021 and quantitatively assessed the overall impacts of mega dust storms both on land and ocean, which could also provide an interdisciplinary research methodology for future research on strong aerosol emission events such as wildfire and volcanic eruption.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poeira/análise , Poluentes Atmosféricos/análise , Ecossistema , Monitoramento Ambiental/métodos , Poluição do Ar/análise , Aerossóis/análise , China
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA