Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
1.
ACS Nano ; 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38982621

RESUMO

Layered transition metal dichalcogenides (TMDs) have exhibited huge potential as anode materials for sodium-ion batteries. Most of them usually store sodium via an intercalation-conversion mechanism, but niobium sulfide (NbS2) may be an exception. Herein, through in situ transmission electron microscopy, we carefully investigated the insertion behaviors of Na ions in NbS2 and directly visualized anisotropic sodiation kinetics. Lattice-resolution imaging coupled with density functional theory calculations reveals the preferential diffusion of Na ions within layers of NbS2, accompanied by observable interlayer lattice expansion. Impressively, the Na-inserted layers can still withstand in situ mechanical testing. Further in situ observation vertical to the a/b plane of NbS2 tracked the illusive conversion reaction, which could result from interlayer gliding or wrinkling associated with stress accumulation. In situ electron diffraction measurements ruled out the possibility of such a conversion mechanism and identified a phase transition from pristine 3R-NbS2 to 2H-NaNbS2. Therefore, the NbS2 anode stores Na ions via only the intercalation mechanism, which conceptually differs from the well-known intercalation-conversion mechanism of typical TMDs. These findings not only decipher the whole sodiation process of the NbS2 anode but also provide valuable reference for unraveling the precise sodium storage mechanism in other TMDs.

2.
Sensors (Basel) ; 24(12)2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38931527

RESUMO

The identification and detection of pesticides is crucial to protecting both the environment and human health. However, it can be challenging to conveniently and rapidly differentiate between different types of pesticides. We developed a supramolecular fluorescent sensor array, in which calixarenes with broad-spectrum encapsulation capacity served as recognition receptors. The sensor array exhibits distinct fluorescence change patterns for seven tested pesticides, encompassing herbicides, insecticides, and fungicides. With a reaction time of just three minutes, the sensor array proves to be a rapid and efficient tool for the discrimination of pesticides. Furthermore, this supramolecular sensing approach can be easily extended to enable real-time and on-site visual detection of varying concentrations of imazalil using a smartphone with a color scanning application. This work not only provides a simple and effective method for pesticide identification and quantification, but also offers a versatile and advantageous platform for the recognition of other analytes in relevant fields.


Assuntos
Calixarenos , Praguicidas , Calixarenos/química , Praguicidas/análise , Técnicas Biossensoriais/métodos , Smartphone , Espectrometria de Fluorescência/métodos
3.
Cancer Discov ; 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38900051

RESUMO

Multiple factors in the design of a chimeric antigen receptor (CAR) influence CAR T-cell activity, with costimulatory signals being a key component. Yet, the impact of costimulatory domains on the downstream signaling and subsequent functionality of CAR-engineered natural killer (NK) cells remains largely unexplored. Here, we evaluated the impact of various costimulatory domains on CAR-NK cell activity, using a CD70-targeting CAR. We found that CD28, a costimulatory molecule not inherently present in mature NK cells, significantly enhanced the antitumor efficacy and long-term cytotoxicity of CAR-NK cells both in vitro and in multiple xenograft models of hematologic and solid tumors. Mechanistically, we showed that CD28 linked to CD3Z creates a platform that recruits critical kinases, such as LCK and ZAP70, initiating a signaling cascade that enhances CAR-NK cell function. Our study provides insights into how CD28 costimulation enhances CAR-NK cell function and supports its incorporation in NK-based CARs for cancer immunotherapy.

4.
Bioorg Chem ; 150: 107588, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38936051

RESUMO

With the advent of mitochondrial targeting moiety such as triphenlyphosphonium cation (TPP+), targeting mitochondria in cancer cells has become a promising strategy for combating tumors. Herein, a series of novel 4-aryl-1,3-thiazole derivatives linked to TPP+ moiety were designed and synthesized. The cytotoxicity against a panel of four cancer cell lines was evaluated by CCK-8 assay. Most of these compounds exhibited moderate to good inhibitory activity over HeLa, PC-3 and HCT-15 cells while MCF-7 cells were less sensitive to most compounds. Among them, compound 12a exhibited a significant anti-proliferative activity against HeLa cells, and prompted for further investigation. Specifically, 12a decreased mitochondrial membrane potential and enhanced levels of reactive oxygen species (ROS). The flow cytometry analysis revealed that compound 12a could induce apoptosis and cell cycle arrest at G0/G1 phase in HeLa cells. In addition, mitochondrial bioenergetics assay revealed that 12a displayed mild mitochondrial uncoupling effect. Taken together, these findings suggest the therapeutic potential of compound 12a as an antitumor agent targeting mitochondria.


Assuntos
Antineoplásicos , Apoptose , Proliferação de Células , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Potencial da Membrana Mitocondrial , Mitocôndrias , Espécies Reativas de Oxigênio , Tiazóis , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Relação Estrutura-Atividade , Tiazóis/farmacologia , Tiazóis/química , Tiazóis/síntese química , Estrutura Molecular , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Linhagem Celular Tumoral , Compostos Organofosforados/farmacologia , Compostos Organofosforados/química , Compostos Organofosforados/síntese química
5.
Inflammation ; 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38739341

RESUMO

Sepsis is defined as a dysregulated host response to infection that leads to multiorgan failure. Innate immune memory, i.e., "trained immunity", can result in stronger immune responses and provide protection against various infections. Many biological agents, including ß-glucan, can induce trained immunity, but these stimuli may cause uncontrolled inflammation. Oroxylin A (OA) is an active flavonoid compound that is derived from Scutellaria baicalensis. OA is an agonist for inducing trained immunity in vivo and in vitro, and ß-glucan was used as a positive control. The protective effects of OA-induced trained immunity were evaluated in mouse models that were established by either lipopolysaccharide (LPS) administration or caecal ligation and puncture (CLP). The expression of inflammatory factors and signaling pathway components involved in trained immunity was evaluated in vitro using qRT‒PCR, western blotting (WB) and enzyme-linked immunosorbent assay (ELISA). Flow cytometry and confocal microscopy were used to examine reactive oxygen species (ROS) levels and phagocytosis in trained macrophages. A PCR array was used to screen genes that were differentially expressed in trained macrophages. Here, we revealed that OA alleviated sepsis via trained immunity. OA-treated macrophages displayed increased glycolysis and mTOR phosphorylation, and mTOR inhibitors suppressed OA-induced trained immunity by effectively reprogramming macrophages. The PCR array revealed key genes in the mTOR signaling pathway in OA-treated macrophages. Furthermore, OA targeted the Dectin-1-syk axis to promote LC3-associated phagocytosis (LAP) by trained macrophages, thereby enhancing the ability of these macrophages to protect against infection. This ability could be transferred to a new host via the adoptive transfer of peritoneal macrophages. This study is the first to provide new insights into the potential of OA-induced trained immunity to be used as a strategy to protect mice against sepsis by promoting LAP by macrophages.

6.
Stem Cells ; 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38733123

RESUMO

Endometrium fibrosis is the leading cause of uterine infertility. Macrophages participated in the occurrence and development of endometrial fibrosis. We previously reported that human umbilical cord multipotent stromal cells (hUC-MSCs) exerted their therapeutic effect in a macrophage-dependent manner in endometrial fibrosis. However precise mechanisms by which hUC-MSCs may influence macrophages in endometrial fibrosis remain largely unexplored. Here, we demonstrated that abnormal iron and lipid metabolism occurred in intrauterine adhesions (IUA) patients and murine models. Ferroptosis has been proven to contribute to the progression of fibrotic diseases. Our results revealed that pharmacological activation of ferroptosis by Erastin aggravated endometrial fibrosis, while inhibition of ferroptosis by Ferrostatin-1 ameliorated endometrial fibrosis in vivo. Moreover, ferroptosis of macrophages was significantly upregulated in endometria of IUA murine models. Of note, transcriptome profiles revealed that CD36 gene expression was significantly increased in IUA patients and immunofluorescence analysis showed CD36 protein was mainly located in macrophages. Silencing CD36 in macrophages could reverse cell ferroptosis. Dual luciferase reporter assay revealed that CD36 was the direct target of activation transcription factor 3 (ATF3). Furthermore, through establishing coculture system and IUA murine models, we found that hUC-MSCs had a protective role against macrophage ferroptosis and alleviated endometrial fibrosis related to decreased CD36 and ATF3. The effect of hUC-MSCs on macrophage ferroptosis was attributed to the upregulation of amphiregulin (AREG). Our data highlighted that macrophage ferroptosis occurred in endometrial fibrosis via the ATF3-CD36 pathway and hUC-MSCs protected against macrophage ferroptosis to alleviate endometrial fibrosis via secreting AREG. These findings provided a potential target for therapeutic implications of endometrial fibrosis.

7.
Nanotechnology ; 35(27)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38574465

RESUMO

The morphology and size control of anisotropic nanocrystals are critical for tuning shape-dependent physicochemical properties. Although the anisotropic dissolution process is considered to be an effective means to precisely control the size and morphology of nanocrystals, the anisotropic dissolution mechanism remains poorly understood. Here, usingin situliquid cell transmission electron microscopy, we investigate the anisotropic etching dissolution behaviors of polyvinylpyrrolidone (PVP)-stabilized Ag nanorods in NaCl solution. Results show that etching dissolution occurs only in the longitudinal direction of the nanorod at low chloride concentration (0.2 mM), whereas at high chloride concentration (1 M), the lateral and longitudinal directions of the nanorods are dissolved. First-principles calculations demonstrate that PVP is selectively adsorbed on the {100} crystal plane of silver nanorods, making the tips of nanorods the only reaction sites in the anisotropic etching process. When the chemical potential difference of the Cl-concentration is higher than the diffusion barrier (0.196 eV) of Cl-in the PVP molecule, Cl-penetrates the PVP molecular layer of {100} facets on the side of the Ag nanorods. These findings provide an in-depth insight into the anisotropic etching mechanisms and lay foundations for the controlled preparation and rational design of nanostructures.

8.
Adv Sci (Weinh) ; 11(24): e2309517, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38647405

RESUMO

Intravenous thrombolysis with recombinant tissue plasminogen activator (rtPA) is the primary treatment for ischemic stroke. However, rtPA treatment can substantially increase blood-brain barrier (BBB) permeability and susceptibility to hemorrhagic transformation. Herein, the mechanism underlying the side effects of rtPA treatment is investigated and demonstrated that ferroptosis plays an important role. The ferroptosis inhibitor, liproxstatin-1 (Lip) is proposed to alleviate the side effects. A well-designed macrocyclic carrier, glucose-modified azocalix[4]arene (GluAC4A), is prepared to deliver Lip to the ischemic site. GluAC4A bound tightly to Lip and markedly improved its solubility. Glucose, modified at the upper rim of GluAC4A, imparts BBB targeting to the drug delivery system owing to the presence of glucose transporter 1 on the BBB surface. The responsiveness of GluAC4A to hypoxia due to the presence of azo groups enabled the targeted release of Lip at the ischemic site. GluAC4A successfully improved drug accumulation in the brain, and Lip@GluAC4A significantly reduced ferroptosis, BBB leakage, and neurological deficits induced by rtPA in vivo. These findings deepen the understanding of the side effects of rtPA treatment and provide a novel strategy for their effective mitigation, which is of great significance for the treatment and prognosis of patients with ischemic stroke.


Assuntos
Modelos Animais de Doenças , Sistemas de Liberação de Medicamentos , Ferroptose , AVC Isquêmico , Ativador de Plasminogênio Tecidual , Animais , Ferroptose/efeitos dos fármacos , Camundongos , AVC Isquêmico/tratamento farmacológico , Ativador de Plasminogênio Tecidual/farmacologia , Ativador de Plasminogênio Tecidual/administração & dosagem , Sistemas de Liberação de Medicamentos/métodos , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Masculino , Quinoxalinas , Compostos de Espiro
9.
Adv Mater ; 36(28): e2401918, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38662940

RESUMO

The complex pathologies in Alzheimer's disease (AD) severely limit the effectiveness of single-target pharmic interventions, thus necessitating multi-pronged therapeutic strategies. While flexibility is essentially demanded in constructing such multi-target systems, for achieving optimal synergies and also accommodating the inherent heterogeneity within AD. Utilizing the dynamic reversibility of supramolecular strategy for conferring sufficient tunability in component substitution and proportion adjustment, amphiphilic calixarenes are poised to be a privileged molecular tool for facilely achieving function integration. Herein, taking ß-amyloid (Aß) fibrillation and oxidative stress as model combination pattern, a supramolecular multifunctional integration is proposed by co-assembling guanidinium-modified calixarene with ascorbyl palmitate and loading dipotassium phytate within calixarene cavity. Serial pivotal events can be simultaneously addressed by this versatile system, including 1) inhibition of Aß production and aggregation, 2) disintegration of Aß fibrils, 3) acceleration of Aß metabolic clearance, and 4) regulation of oxidative stress, which is verified to significantly ameliorate the cognitive impairment of 5×FAD mice, with reduced Aß plaque content, neuroinflammation, and neuronal apoptosis. Confronted with the extremely intricate clinical realities of AD, the strategy presented here exhibits ample adaptability for necessary alterations on combinations, thereby may immensely expedite the advancement of AD combinational therapy through providing an exceptionally convenient platform.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Calixarenos , Nanopartículas , Estresse Oxidativo , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Animais , Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/antagonistas & inibidores , Peptídeos beta-Amiloides/química , Nanopartículas/química , Camundongos , Calixarenos/química , Estresse Oxidativo/efeitos dos fármacos , Humanos
10.
Cell Death Dis ; 15(2): 120, 2024 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-38331868

RESUMO

Targeting C5aR1 modulates the function of infiltrated immune cells including tumor-associated macrophages (TAMs). The gut microbiome plays a pivotal role in colorectal cancer (CRC) tumorigenesis and development through TAM education. However, whether and how the gut flora is involved in C5aR1 inhibition-mediated TAMs remains unclear. Therefore, in this study, genetic deletion of C5ar1 or pharmacological inhibition of C5aR1 with anti-C5aR1 Ab or PMX-53 in the presence or absence of deletion Abs were utilized to verify if and how C5aR1 inhibition regulated TAMs polarization via affecting gut microbiota composition. We found that the therapeutic effects of C5aR1 inhibition on CRC benefited from programming of TAMs toward M1 polarization via driving AKT2-mediated 6-phosphofructokinase muscle type (PFKM) stabilization in a TLR5-dependent manner. Of note, in the further study, we found that C5aR1 inhibition elevated the concentration of serum IL-22 and the mRNA levels of its downstream target genes encoded antimicrobial peptides (AMPs), leading to gut microbiota modulation and flagellin releasement, which contributed to M1 polarization. Our data revealed that high levels of C5aR1 in TAMs predicted poor prognosis. In summary, our study suggested that C5aR1 inhibition reduced CRC growth via resetting M1 by AKT2 activation-mediated PFKM stabilization in a TLR5-dependent manner, which relied on IL-22-regulated gut flora.


Assuntos
Microbioma Gastrointestinal , Macrófagos , Receptor 5 Toll-Like/genética , Fosfofrutoquinases , Fosfofrutoquinase-1 , Músculos , Microambiente Tumoral
11.
Int Orthop ; 48(6): 1471-1479, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38117292

RESUMO

PURPOSE: T-condylar (T-C) fractures of the distal humerus are rare in children. There is no accepted treatment for such an injury, and there is a lack of reports evaluating the outcome of T-C fractures treated by closed reduction and percutaneous fixation. The aim of this study was to evaluate the feasibility of closed reduction and percutaneous K-wire and screw (CRPKS) fixation in patients with type II and III T-C fractures according to the Toniolo-Wilkins classification modified by Canavese et al. (TWC classification). METHODS: The clinical data of 12 consecutive patients (8 males, 4 females) who were younger than 14 years of age and who had a T-C fracture that was managed by CRPKS were retrospectively evaluated. Fractures were classified according to the TWC classification. The baseline information of the patients, carrying angle (CA) and Mayo Elbow Performance Score (MEPS) were used to evaluate clinical and functional outcomes; related complications were recorded. Statistical analysis was performed. RESULTS: The mean age at the time of injury was 11.6 ± 1.8 years (range, 8-14). The time from injury to surgical treatment was 1.5 ± 1.0 days (range, 0-3), and the mean follow-up duration was 33.7 ± 12.3 months (range, 18-61). Surgery lasted 45.7 ± 7.6 min on average (range, 35-58). All fractures healed in 4.9 ± 1.0 weeks on average (range, 4-7). At the last follow-up visit, the CA was 12.6° ± 5.8° on the injured side and 13.8° ± 1.8° on the uninjured side (p=0.432). The MEPS was 100 (95, 100) on the injured side and 100 (100, 100) on the uninjured side (p=0.194). Three complications were recorded. CONCLUSION: Good functional and radiological outcomes can be expected in pediatric patients with type II and III T-C fractures treated by CRPKS. The technique is relatively simple to perform and has a lower rate of complications.


Assuntos
Parafusos Ósseos , Fios Ortopédicos , Redução Fechada , Articulação do Cotovelo , Fraturas do Úmero , Humanos , Masculino , Feminino , Criança , Adolescente , Estudos Retrospectivos , Fraturas do Úmero/cirurgia , Articulação do Cotovelo/cirurgia , Articulação do Cotovelo/fisiopatologia , Redução Fechada/métodos , Resultado do Tratamento , Amplitude de Movimento Articular/fisiologia , Fixação Interna de Fraturas/métodos , Fixação Interna de Fraturas/instrumentação , Lesões no Cotovelo , Radiografia/métodos
12.
Acc Chem Res ; 56(24): 3626-3639, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38059474

RESUMO

ConspectusMacrocyclic receptors can serve as alternatives to natural recognition systems as recognition tools. They provide effectively preorganized cavities to encapsulate guests via host-guest interactions, thereby affecting the physiochemical properties of the guests. Macrocyclic receptors exhibit chemical and thermal stabilities higher than those of natural receptors and thus are expected to resist degradation inside the body. This reduces the risk of harmful degradation byproducts and ensures optimal levels of effectiveness. Macrocyclic receptors have precise molecular weights and well-defined structures; this ensures their batch-to-batch reproducibility, which is critical for ensuring quality and effectiveness levels. Moreover, macrocyclic receptors exhibit broad modification tunabilities, rendering them adaptable to various guests. Molecular recognition is the basis of numerous biological processes. Macrocyclic receptors may display considerable potential for application in diagnosing and treating diseases, depending on the host-guest recognition of bioactive molecules. However, the binding affinities and selectivities of macrocyclic receptors toward bioactive molecules are generally insufficient, which may lead to problems such as low diagnosis accuracies, off-target leaking, and interference with normal functions. Therefore, addressing the challenge of the strong and specific complexation of bioactive molecules and macrocyclic receptors is imperative.To overcome this challenge, we proposed the innovative strategies of longitudinal cavity extension and coassembled heteromultivalent recognition for application in the recognition of small molecules and biomacromolecules, respectively. The deepened cavity provides a stronger hydrophobic effect and a larger interaction area while maintaining the framework rigidity. By coassembling two macrocyclic amphiphiles into one ensemble, we achieved the desired heteromultivalent recognition. This strategy affords the necessary binding properties while preventing the requirement of tedious steps and site mismatch in covalent synthesis. Using these two strategies, we achieved specific and strong binding of macrocyclic receptors to various bioactive molecules including biomarkers, drugs, and disease-related peptides/proteins. We then applied these macrocyclic receptor-based recognition systems in biosensing and bioimaging, drug delivery, and therapeutics.In this Account, we summarize the strategies we used in the recognition of small molecules and biomacromolecules. Thereafter, we discuss their applications in precision medicine, involving the (1) sensing of biomarkers and imaging of lesion sites, which are critical in the early screening of diseases and accurate diagnoses; (2) precise loading and targeted delivery of drugs, which are crucial in improving their therapeutic efficacies and reducing their side effects; and (3) capture and removal of disease-related biomacromolecules, which are significant for precise intervention in life processes. Finally, we propose recommendations for the further development of macrocyclic receptor-based recognition systems in biomedicine. Macrocyclic receptors exhibit considerable potential for research, and continued investigation may not only expand the applications of supramolecular chemistry but also open novel avenues for the development of precision medicine.


Assuntos
Sistemas de Liberação de Medicamentos , Medicina de Precisão , Reprodutibilidade dos Testes , Sistemas de Liberação de Medicamentos/métodos , Preparações Farmacêuticas , Biomarcadores
13.
PLoS One ; 18(12): e0286441, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38150459

RESUMO

Hepatitis B virus (HBV) infection has gradually been considered to associate with cancer development and progression. This study aimed to explore the associations of serological indicators of HBV infection with mortality risk among cancer survivors and further validated using a gastric cancer (GC) cohort from China, where HBV infection is endemic. National Center for Health Statistics' National Health and Nutrition Examination Survey (NHANES) data were used in this study. Individuals with positive results of hepatitis B core antigen (anti-HBc) were considered to have current or past HBV infection. Serological indicators were positive only for hepatitis B surface antibodies (anti-HBs), indicating vaccine-induced immunity, whereas negativity for all serologic indicators was considered to indicate the absence of HBV infection and immunity to HBV. The GC cohort included patients from the First Hospital of Jilin University, China. The median follow-up time of the NHANES was 10 years; during the follow-up, 1505 deaths occurred. The results revealed that anti-HBs-positive cancer survivors had a 39% reduced risk of mortality (hazard ratio [HR] 0.61, 95% confidence interval [CI] 0.44-0.85). Men and individuals aged <65 years old with past exposure to HBV had higher mortality risk (HR 1.52, 95% CI 1.09-2.13; HR 2.07, 95% CI 1.13-3.83). In this GC cohort, individuals who were only anti-HBs-positive showed a reduced risk of mortality (HR 0.77, 95% CI 0.62-0.95). Thus, anti-HBs positivity was a significant factor of decreased mortality among cancer survivors. More rigorous surveillance is necessary for cancer survivors with anti-HBc positivity, particularly men, and younger individuals.


Assuntos
Sobreviventes de Câncer , Hepatite B , Neoplasias Gástricas , Masculino , Humanos , Idoso , Inquéritos Nutricionais , Antígenos de Superfície da Hepatite B , Neoplasias Gástricas/complicações , Vírus da Hepatite B , Hepatite B/epidemiologia , Anticorpos Anti-Hepatite B , Antígenos do Núcleo do Vírus da Hepatite B
14.
Chem Commun (Camb) ; 59(97): 14435-14438, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37982192

RESUMO

IL/ICOF composites were in situ synthesized via a one-pot route in half an hour under ambient conditions for catalytic cycloaddition of CO2 with epoxides into cyclic carbonates. The prepared composites feature a decent CO2 adsorption capacity of 1.63 mmol g-1 at 273 K and 1 bar and exhibit excellent catalytic performance in terms of yield and durability. This work may pave a new way to design and construct functionalized porous organic frameworks as heterogeneous catalysts for CO2 capture and conversion.

16.
J Viral Hepat ; 30(11): 859-869, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37723945

RESUMO

The aim of this study was to determine whether the age-Male-ALBI-Platelet (aMAP) score is applicable in community settings and how to maximise its role in risk stratification. A total of thousand five hundred and three participants had an aMAP score calculated at baseline and were followed up for about 10 years to obtain information on liver cancer incidence and death. After assessing the ability of aMAP to predict liver cancer incidence and death in terms of differentiation and calibration, the optimal risk stratification threshold of the aMAP score was explored, based on absolute and relative risks. The aMAP score achieved higher area under curves (AUCs) (almost all above 0.8) within 10 years and exhibited a better calibration within 5 years. Regarding absolute risk, the risk of incidence of and death from liver cancer showed a rapid increase after an aMAP score of 55. The cumulative incidence (5-year: 8.3% vs. 1.3% and 10-year: 20.9% vs. 3.6%) and mortality (5-year: 6.7% vs. 1.1% and 10-year: 17.5% vs. 3.1%) of liver cancer in individuals with an aMAP score of ≥55 were significantly higher than in those with a score of <55 (Grey's test p < .001). In terms of relative risk, the risk of death from liver cancer surpassed that from other causes after an aMAP score of ≥55 [HR = 1.38(1.02-1.87)]. Notably, the two types of death risk had opposite trends between the subpopulation with an aMAP score of ≥55 and < 55. To conclude, this study showed the value of the aMAP score in community settings and recommends using 55 as a new risk stratification threshold to guide subsequent liver cancer screening.


Assuntos
Hepatite B , Neoplasias Hepáticas , Humanos , Masculino , Estudos de Coortes , Seguimentos , Detecção Precoce de Câncer , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/epidemiologia
17.
JCI Insight ; 8(21)2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37751293

RESUMO

Calponin 2 (CNN2) is a prominent actin stabilizer. It regulates fatty acid oxidation (FAO) by interacting with estrogen receptor 2 (ESR2) to determine kidney fibrosis. However, whether CNN2 is actively involved in acute kidney injury (AKI) remains unclear. Here, we report that CNN2 was induced in human and animal kidneys after AKI. Knockdown of CNN2 preserved kidney function, mitigated tubular cell death and inflammation, and promoted cell proliferation. Distinct from kidney fibrosis, proteomics showed that the key elements in the FAO pathway had few changes during AKI, but we identified that 3-hydroxymethylglutaryl-CoA synthase 2 (Hmgcs2), a rate-limiting enzyme of endogenous ketogenesis that promotes cell self-renewal, was markedly increased in CNN2-knockdown kidneys. The production of ketone body ß-hydroxybutyrate and ATP was increased in CNN2-knockdown mice. Mechanistically, CNN2 interacted with ESR2 to negatively regulate the activities of mitochondrial sirtuin 5. Activated sirtuin 5 subsequently desuccinylated Hmgcs2 to produce energy for mitigating AKI. Understanding CNN2-mediated discrete fine-tuning of protein posttranslational modification is critical to optimize organ performance after AKI.


Assuntos
Injúria Renal Aguda , Sirtuínas , Animais , Humanos , Camundongos , Injúria Renal Aguda/metabolismo , Fibrose , Corpos Cetônicos , Calponinas
18.
Adv Mater ; 35(44): e2306580, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37643472

RESUMO

Aqueous rechargeable zinc-ion batteries (ARZIBs) are a promising next-generation energy-storage device by virtue of the superior safety and low cost of both the aqueous electrolyte and zinc-metal anode. However, their development is hindered by the lack of suitable cathodes with high volumetric capacity that can provide both lightweight and compact size. Herein, a novel cathode chemistry based on amorphous Se doped with transition metal Ru that mitigates the resistive surface layer produced by the side reactions between the Se cathode and aqueous electrolyte is reported. This improvement can permit high volumetric capacity in this system. Distinct from the conventional conversion mechanisms between Se and ZnSe in Se||Zn cells, this strategy realizes synchronous proton and Zn2+ intercalation/deintercalation in the Ru-doped amorphous Se||Zn half cells. Moreover, an unanticipated Zn2+ deposition/stripping process in this system further contributes to the superior electrochemical performance of this new cathode chemistry. Consequently, the Ru-doped amorphous Se||Zn half cells are found to deliver a record-high capacity of 721 mAh g-1 /3472 mAh cm-3 , and superior cycling stability of over 800 cycles with only 0.015% capacity decay per cycle. This reported work opens the door for new chemistries that can further improve the gravimetric and volumetric capacity of ARZIBs.

19.
Opt Express ; 31(14): 23149-23170, 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37475407

RESUMO

Considering strong signal attenuation of the large-angle non-line-of-sight (NLOS) link achieved due to the ultraviolet (UV) scattering properties, we propose to increase the UV communication link gain under a large scattering angle via generating agglomerate fog within a certain range as a secondary light source. In this study, a channel model with locally strong scatterers from agglomerate fog is proposed based on Monte Carlo ray-tracing approaches. Mie theory is adopted to calculate the atmospheric channel parameters, to further evaluate the link gain of a channel under non-uniform atmosphere. The performance of scattering system in the presence of fog conditions depends on the relative positions of the light source to the fog and to the receiver. The link gain results reveal the transmission capabilities for different scattering channel geometries, and give the optimal spray point location within a 10 m communication range. We further establish a foggy NLOS system using an agglomerate fog generator to verify our research in the real environment. The results show that the received signal strength of the NLOS link can be effectively enhanced by constructing scatterers in the atmospheric channel, which significantly decreases the bit-error rate (BER).

20.
Front Microbiol ; 14: 1051104, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37125157

RESUMO

Background: The COVID-19 pandemic brings great pressure to the public health systems. This meta-analysis aimed to compare the clinical outcomes among different virus variants, to clarify their impact on medical resources and to provide evidence for the formulation of epidemic prevention policies. Methods: A systematic literature search was performed in the PubMed, Embase, and Cochrane Library databases using the key words "Omicron" and "Delta." The adjusted Risk ratios (RRs), Odds ratios (ORs) and Hazard ratios (HRs) were extracted, and RRs and Rate difference % (RD%) were used to interpret the risk estimates of the outcomes ultimately. Results: Forty-three studies were included, with 3,812,681 and 14,926,841 individuals infected with SARS-CoV-2 Delta and Omicron variant, respectively. The relative risks of hospitalization, death, ICU admission, and mechanical ventilation use after infection with the Omicron variant were all significantly reduced compared those after infection with the Delta variant (RRhospitalization = 0.45, 95%CI: 0.40-0.52; RRdeath = 0.37, 95%CI: 0.30-0.45; RRICU = 0.35, 95%CI: 0.29-0.42; RRmechanical ventilation = 0.33, 95%CI: 0.25-0.44). The change of both absolute and relative risks for hospitalization was more evident (RR = 0.47, 95%CI: 0.42-0.53;RD% =10.61, 95%CI: 8.64-12.59) and a significant increase was observed for the absolute differences in death in the elderly (RD% = 5.60, 95CI%: 4.65-6.55); the change of the absolute differences in the risk of hospitalization and death were most markedly observed in the patients with booster vaccination (RD%hospitalization = 8.60, 95CI%: 5.95-11.24; RD%death = 3.70, 95CI%: 0.34-7.06). Conclusion: The ability of the Omicron variant to cause severe clinical events has decreased significantly, as compared with the Delta variant, but vulnerable populations still need to be vigilant. There was no interaction between the vaccination doses and different variants.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...