Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Agric Food Chem ; 72(26): 14557-14569, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38957088

RESUMO

This study aimed to investigate the mechanisms by which dark septate endophytes (DSE) regulate salt tolerance and the accumulation of bioactive constituents in licorice. First, the salt stress tolerance and resynthesis with the plant effect of isolated DSE from wild licorice were tested. Second, the performance of licorice inoculated with DSE, which had the best salt-tolerant and growth-promoting effects, was examined under salt stress. All isolated DSE showed salt tolerance and promoted plant growth, withCurvularia lunata D43 being the most effective. Under salt stress, C. lunata D43 could promote growth, increase antioxidant enzyme activities, enhance glycyrrhizic acid accumulation, improve key enzyme activities in the glycyrrhizic acid synthesis pathway, and induce the expression of the key enzyme gene and salt tolerance gene of licorice. The structural equation model demonstrated that DSE alleviate the negative effects of salt stress through direct and indirect pathways. Variations in key enzyme activities, gene expression, and bioactive constituent concentration can be attributed to the effects of DSE. These results contribute to revealing the value of DSE for cultivating medicinal plants in saline soils.


Assuntos
Endófitos , Glycyrrhiza , Ácido Glicirrízico , Estresse Salino , Ácido Glicirrízico/metabolismo , Glycyrrhiza/química , Glycyrrhiza/metabolismo , Glycyrrhiza/microbiologia , Endófitos/metabolismo , Endófitos/genética , Tolerância ao Sal , Ascomicetos/metabolismo , Ascomicetos/crescimento & desenvolvimento , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Regulação da Expressão Gênica de Plantas
2.
J Ethnopharmacol ; 321: 117390, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-37956911

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Pyrrolizidine alkaloids (PAs) are a group of phytotoxins present in about 3% of flowering plants worldwide. Ingestion of PA-containing herbal products may lead to hepatotoxicity. Notably, the toxicokinetic (TK) behaviors, especially pyrrole-protein adducts (PPAs) having the same structure but generated from metabolic activation of different PAs, significantly affect the toxicity of structurally diverse PAs, therefore studying them in their pure form is preferable to extracts to stratify toxic potency of different PAs co-existing in herbal extracts. However, previous studies mainly focus on the establishment of TK profiles of the intact PAs, revealing less or no kinetic information on the main PA metabolites (PA N-oxides) and PPAs which mediate PA-induced hepatotoxicity. In this study, PPA was measured as the biomarker of PA exposure and PA-induced toxicity. AIM OF STUDY: This study aims to investigate the TK difference between structurally diverse PAs of retronecine-type PAs: retrorsine (RTS) and monocrotaline (MCT), and otonecine-type PA: clivorine (CLI), and their toxicity-related metabolite PPAs and PA N-oxides, the main metabolite of retronecine-type PAs, for the establishment of a more accurate risk assessment of PAs exposure. MATERIALS AND METHODS: The TK studies were conducted using rats through intravenous (i.v.) or oral (p.o.) administration of PAs at 20 mg/kg. The main TK parameters of PAs and PA N-oxides were determined from plasma concentration-time profiles, and the kinetic profiles of PPAs were assessed from both plasma and erythrocyte concentration-time profiles. RESULTS: MCT demonstrated the slowest but the highest extent of absorption among the three PAs, while RTS demonstrated a similar absorption rate with a lower extent than CLI. For elimination, MCT demonstrated a similar elimination rate as RTS but the lowest extent of elimination among the three PAs, and CLI exhibited significantly faster elimination than MCT and RTS. Moreover, the formation of PA N-oxide, which only occurs in retronecine-type PAs, was remarkably less in MCT-treated rats compared to RTS-treated ones. Of note, the retronecine-type RTS and MCT induced more PPAs via p.o. than i.v. administration route, whereas the otonecine-type CLI showed the opposite trend. CONCLUSION: Dramatic TK differences, including not only PAs but also PA N-oxides and the derived protein adduct PPAs, were found among structurally diverse PAs in rats, laying the basis for varied hepatotoxic potencies induced by different PA-containing herbal products. Notably, our findings for the first time uncovered that oral administration of retronecine-type PAs might cause severer toxicity compared with the intravenous route, which warrants further in-depth exploration.


Assuntos
Alcaloides , Doença Hepática Induzida por Substâncias e Drogas , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Alcaloides de Pirrolizidina , Ratos , Animais , Toxicocinética , Alcaloides de Pirrolizidina/química , Óxidos/química
3.
Front Cell Dev Biol ; 11: 1209320, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38020907

RESUMO

Background: Currently, the mechanism(s) underlying corticogenesis is still under characterization. Methods: We curated the most comprehensive single-cell RNA-seq (scRNA-seq) datasets from mouse and human fetal cortexes for data analysis and confirmed the findings with co-immunostaining experiments. Results: By analyzing the developmental trajectories with scRNA-seq datasets in mice, we identified a specific developmental sub-path contributed by a cell-population expressing both deep- and upper-layer neurons (DLNs and ULNs) specific markers, which occurred on E13.5 but was absent in adults. In this cell-population, the percentages of cells expressing DLN and ULN markers decreased and increased, respectively, during the development suggesting direct neuronal transition (namely D-T-U). Whilst genes significantly highly/uniquely expressed in D-T-U cell population were significantly enriched in PTN/MDK signaling pathways related to cell migration. Both findings were further confirmed by co-immunostaining with DLNs, ULNs and D-T-U specific markers across different timepoints. Furthermore, six genes (co-expressed with D-T-U specific markers in mice) showing a potential opposite temporal expression between human and mouse during fetal cortical development were associated with neuronal migration and cognitive functions. In adult prefrontal cortexes (PFC), D-T-U specific genes were expressed in neurons from different layers between humans and mice. Conclusion: Our study characterizes a specific cell population D-T-U showing direct DLNs to ULNs neuronal transition and migration during fetal cortical development in mice. It is potentially associated with the difference of cortical development in humans and mice.

4.
Food Chem Toxicol ; 178: 113903, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37390955

RESUMO

Pyrrolizidine alkaloids (PAs) are phytotoxins distributed in ∼6000 plant species. PA-contaminated/containing foodstuffs/herbs/supplements pose a potential threat to human health. Various regulatory authorities established different PA margins of exposure assuming an equal hepatotoxic potency of structurally diverse PAs, although they exhibit different toxic potencies. Therefore, understanding hepatotoxic potencies of different PAs would facilitate a more appropriate risk assessment of PA exposure. In this study, a zebrafish model, which mimics physiological processes of absorption, distribution, metabolism, and excretion, was selected to evaluate acute hepatotoxic potency of different PAs (7 PAs and 2 PA N-oxides) and explore possible physiological pathways involved in PA-induced hepatotoxicity. After 6 h oral administration, PAs caused distinct structure-dependent hepatotoxicity with a series of biochemical and histological changes in zebrafish. Based on the measured toxicological endpoints, the relative toxic potency order of different PAs was derived as lasiocarpine âˆ¼ retrorsine > monocrotaline > riddelliine > clivorine > heliotrine > retrorsine N-oxide âˆ¼ riddelliine N-oxide≫>platyphyline. Further, compared to control group, different upregulation/downregulation of mRNA expression in PA-treated groups indicated that inflammation, apoptosis, and steatosis were involved in PA-induced hepatotoxicity in zebrafish. These findings demonstrate that zebrafish model is useful for screening and ranking hepatotoxicity of PAs with diverse structures, which would facilitate the more accurate risk assessment of PA exposure.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Alcaloides de Pirrolizidina , Animais , Humanos , Peixe-Zebra/metabolismo , Alcaloides de Pirrolizidina/química , Óxidos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...