Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 3263, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627393

RESUMO

Gouty arthritis evokes joint pain and inflammation. Mechanisms driving gout pain and inflammation remain incompletely understood. Here we show that CXCL5 activates CXCR2 expressed on nociceptive sensory neurons to drive gout pain and inflammation. CXCL5 expression was increased in ankle joints of gout arthritis model mice, whereas CXCR2 showed expression in joint-innervating sensory neurons. CXCL5 activates CXCR2 expressed on nociceptive sensory neurons to trigger TRPA1 activation, resulting in hyperexcitability and pain. Neuronal CXCR2 coordinates with neutrophilic CXCR2 to contribute to CXCL5-induced neutrophil chemotaxis via triggering CGRP- and substance P-mediated vasodilation and plasma extravasation. Neuronal Cxcr2 deletion ameliorates joint pain, neutrophil infiltration and gait impairment in model mice. We confirmed CXCR2 expression in human dorsal root ganglion neurons and CXCL5 level upregulation in serum from male patients with gouty arthritis. Our study demonstrates CXCL5-neuronal CXCR2-TRPA1 axis contributes to gouty arthritis pain, neutrophil influx and inflammation that expands our knowledge of immunomodulation capability of nociceptive sensory neurons.


Assuntos
Artrite Gotosa , Animais , Humanos , Masculino , Camundongos , Artralgia , Quimiocina CXCL5/genética , Quimiocina CXCL5/metabolismo , Inflamação , Nociceptividade , Nociceptores/metabolismo , Dor
2.
Biochem Pharmacol ; 223: 116163, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38522555

RESUMO

Allergic contact dermatitis (ACD) is a common skin disease featured with skin inflammation and a mixed itch/pain sensation. The itch/pain causes the desire to scratch, affecting both physical and psychological aspects of patients. Nevertheless, the mechanisms underlying itch/pain sensation of ACD still remain elusive. Here, we found that oxidative stress and oxidation-related injury were remarkably increased in the inflamed skin of a mouse model of ACD. Reducing oxidative stress significantly attenuated itch/pain-related scratching, allokonesis and skin inflammation. RNA-Sequencing reveals oxidative stress contributes to a series of skin biological processes, including inflammation and immune response. Attenuating oxidative stress reduces overproduction of IL-1ß and IL-33, two critical cytokines involved in inflammation and pain/itch, in the inflamed skin of model mice. Exogenously injecting H2O2 into the neck skin of naïve mice triggered IL-33 overproduction in skin keratinocytes and induced scratching, which was reduced in mice deficient in IL-33 receptor ST2. ACD model mice showed remarkable neutrophil infiltration in the inflamed skin. Blocking neutrophil infiltration reduced oxidative stress and attenuated scratching and skin inflammation. Therefore, our study reveals a critical contribution of neutrophil-derived oxidative stress to skin inflammation and itch/pain-related scratching of ACD model mice via mechanisms involving the triggering of IL-33 overproduction in skin keratinocytes. Targeting skin oxidative stress may represent an effective therapy for ameliorating ACD.


Assuntos
Dermatite Alérgica de Contato , Interleucina-33 , Humanos , Animais , Camundongos , Interleucina-33/genética , Citocinas , Peróxido de Hidrogênio/farmacologia , Neutrófilos , Pele , Dermatite Alérgica de Contato/psicologia , Prurido/induzido quimicamente , Modelos Animais de Doenças , Inflamação , Dor
3.
Biomed Pharmacother ; 170: 115957, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38042115

RESUMO

Excessive deposition of monosodium urate (MSU) crystal in the joint results in gout arthritis, which triggers severe pain and affects life quality. Oxidative stress is a pivotal mechanism that contributes to etiology of gout pain and inflammation. Here we investigated whether activating Nrf2, which plays important roles in regulating endogenous antioxidant response, would attenuate gout arthritis via promoting antioxidant signaling in joint tissues. Gout arthritis model was established by intra-articular injection of MSU (500 µg/ankle) into the right ankle joint of mouse. Pharmacologically activating Nrf2 by activator oltipraz (50, 100 or 150 mg/kg, intraperitoneal) at 1 h before and 5, 23, 47 h after model establishment dose-dependently inhibited joint inflammation, mechanical and heat hypersensitivities in model mice. Oltipraz (100 mg/kg) reversed gait impairments without altering locomotor activity and reduced neutrophil infiltrations in ankle joints. In vitro studies revealed oltipraz (25 µM) inhibited MSU-induced ROS production in mouse macrophages and improved mitochondrial bioenergetics impairments caused by MSU. In vivo ROS imaging combined with biochemical assays confirmed the antioxidant effects of oltipraz on model mice. Nrf2 activation inhibited pro-inflammatory cytokine overproduction in ankle joint and attenuated the overexpression and enhancement in TRPV1 channel in DRG neurons innervating hind limb. Therapeutic effects of oltipraz were abolished by inhibiting Nrf2 or in Nrf2 knockout mice. These results suggest pharmacologically activating Nrf2 alleviates gout pain, gait impairments, inflammation and peripheral sensitization via Nrf2-dependent antioxidant mechanism. Targeting Nrf2 may represent a novel treatment option for gout arthritis.


Assuntos
Artrite Gotosa , Gota , Camundongos , Animais , Antioxidantes/uso terapêutico , Gota/induzido quimicamente , Gota/complicações , Fator 2 Relacionado a NF-E2 , Ácido Úrico/efeitos adversos , Espécies Reativas de Oxigênio , Artrite Gotosa/tratamento farmacológico , Inflamação/induzido quimicamente , Dor/tratamento farmacológico
4.
Front Behav Neurosci ; 17: 1189489, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37304762

RESUMO

Introduction: Lateral ankle sprain (LAS) is a very common type of joint injury. It occurred with high incidence among general population and especially among individuals participating sports and outdoor activities. A certain proportion of individuals who once developed LAS may suffer persistent ankle pain that affects daily activities. However, the mechanisms underlying LAS-induced pain still remained largely unknown. Methods: We established a LAS mouse model and systematically evaluated the pain-related behaviors in this mouse model. RNA sequencing (RNA-Seq), combined with bioinformatics analysis, was undertaken to explore gene expression profiles. Immunostaining was used to study glial cell and neuron activation in ipsilateral spinal cord dorsal horn (SCDH) of LAS model mice. Ibuprofen was used to treat LAS model mice. Results: The LAS model mice developed obvious signs of mechanical and heat hypersensitivities as well as gait impairments in ipsilateral hind paws. Besides, LAS model mice developed signs of pain-related emotional disorder, including pain-induced aversion. By RNA-Seq, we were able to identify certain differentially expressed genes and signaling pathways that might contribute to pain mechanisms of LAS mouse model. In addition, LAS model mice showed increased c-Fos and p-ERK immunoreactivity as well as astrocyte and microglia overactivation in ipsilateral spinal cord dorsal horn, indicating central sensitization might occur. Finally, LAS model mice respond to ibuprofen, a drug clinically used to treat ankle sprain pain. Conclusion: Our study found LAS model mice may be used as a preclinical animal model for screening novel targets or therapies for ankle sprain. Thus, the study may further help to understand molecular mechanisms contributing to ankle sprain-induced pain.

5.
J Neuroinflammation ; 20(1): 109, 2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-37158939

RESUMO

BACKGROUND: Complex regional pain syndrome type-I (CRPS-I) causes excruciating pain that affect patients' life quality. However, the mechanisms underlying CRPS-I are incompletely understood, which hampers the development of target specific therapeutics. METHODS: The mouse chronic post-ischemic pain (CPIP) model was established to mimic CRPS-I. qPCR, Western blot, immunostaining, behavioral assay and pharmacological methods were used to study mechanisms underlying neuroinflammation and chronic pain in spinal cord dorsal horn (SCDH) of CPIP mice. RESULTS: CPIP mice developed robust and long-lasting mechanical allodynia in bilateral hindpaws. The expression of inflammatory chemokine CXCL13 and its receptor CXCR5 was significantly upregulated in ipsilateral SCDH of CPIP mice. Immunostaining revealed CXCL13 and CXCR5 was predominantly expressed in spinal neurons. Neutralization of spinal CXCL13 or genetic deletion of Cxcr5 (Cxcr5-/-) significantly reduced mechanical allodynia, as well as spinal glial cell overactivation and c-Fos activation in SCDH of CPIP mice. Mechanical pain causes affective disorder in CPIP mice, which was attenuated in Cxcr5-/- mice. Phosphorylated STAT3 co-expressed with CXCL13 in SCDH neurons and contributed to CXCL13 upregulation and mechanical allodynia in CPIP mice. CXCR5 coupled with NF-κB signaling in SCDH neurons to trigger pro-inflammatory cytokine gene Il6 upregulation, contributing to mechanical allodynia. Intrathecal CXCL13 injection produced mechanical allodynia via CXCR5-dependent NF-κB activation. Specific overexpression of CXCL13 in SCDH neurons is sufficient to induce persistent mechanical allodynia in naïve mice. CONCLUSIONS: These results demonstrated a previously unidentified role of CXCL13/CXCR5 signaling in mediating spinal neuroinflammation and mechanical pain in an animal model of CRPS-I. Our work suggests that targeting CXCL13/CXCR5 pathway may lead to novel therapeutic approaches for CRPS-I.


Assuntos
Quimiocina CXCL13 , Dor Crônica , Receptores CXCR5 , Distrofia Simpática Reflexa , Animais , Camundongos , Quimiocina CXCL13/metabolismo , Modelos Animais de Doenças , Hiperalgesia , Doenças Neuroinflamatórias , NF-kappa B , Corno Dorsal da Medula Espinal , Receptores CXCR5/metabolismo
6.
J Neurochem ; 165(2): 196-210, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36748629

RESUMO

Nociplastic pain is a severe health problem, while its mechanisms are still unclear. (R, S)-3,5-Dihydroxyphenylglycine (DHPG) is a group I metabotropic glutamate receptor (mGluR) agonist that can cause central sensitization, which plays a role in nociplastic pain. In this study, after intrathecal injection of 25 nmol DHPG for three consecutive days, whole proteins were extracted from the L4~6 lumbar spinal cord of mice 2 h after intrathecal administration on the third day for proteomics analysis. Based on the results, 15 down-regulated and 20 up-regulated proteins were identified in mice. Real-time quantitative PCR (RT-qPCR) and western blotting (WB) revealed that the expression of ectopic P granules protein 5 homolog (EPG5) mRNA and protein were significantly up-regulated compared with the control group, which was consistent with the proteomics results. Originally identified in the genetic screening of Caenorhabditis elegans, EPG5 is mainly involved in regulating autophagy in the body, and in our study, it was mainly expressed in spinal neurons, as revealed by immunohistochemistry staining. After the intrathecal injection of 8 µL adeno-associated virus (AAV)-EPG5 short hairpin RNA (shRNA) to knock down spinal EPG5, the hyperalgesia caused by DHPG was relieved. Altogether, these results suggest that EPG5 plays an important role in DHPG-induced pain sensitization in mice.


Assuntos
Grânulos de Ribonucleoproteínas de Células Germinativas , Receptores de Glutamato Metabotrópico , Camundongos , Animais , Receptores de Glutamato Metabotrópico/metabolismo , Dor/metabolismo , Hiperalgesia , Proteínas Relacionadas à Autofagia , Proteínas de Transporte Vesicular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...