Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(22): 29177-29187, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38781454

RESUMO

Allergic reactions can profoundly influence the quality of life. To address the health risks posed by allergens and overcome the permeability limitations of the current filter materials, this work introduces a novel microhoneycomb (MH) material for practical filter applications such as masks. Through a synthesis process integrating ice-templating and a gas-phase post-treatment with silane, MH achieves unprecedented levels of moisture resistance and mechanical stability while preserving the highly permeable microchannels. Notably, MH is extremely elastic, with a 92% recovery rate after being compressed to 80% deformation. The filtration efficiency surpasses 98.1% against pollutant particles that simulate airborne pollens, outperforming commercial counterparts with fifth-fold greater air permeability while ensuring unparalleled user comfort. Moreover, MH offers a sustainable solution, being easily regenerated through back-flow blowing, distinguishing it from conventional nonwoven fabrics. Finally, a prototype mask incorporating MH is presented, demonstrating its immense potential as a high-performance filtration material, effectively addressing health risks posed by allergens and other harmful particles.

2.
Small ; 20(16): e2306325, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38032161

RESUMO

Due to the manufacturability of highly well-defined structures and wide-range versatility in its microstructure, SiO2 is an attractive template for synthesizing graphene frameworks with the desired pore structure. However, its intrinsic inertness constrains the graphene formation via methane chemical vapor deposition. This work overcomes this challenge by successfully achieving uniform graphene coating on a trimethylsilyl-modified SiO2 (denote TMS-MPS). Remarkably, the onset temperature for graphene growth dropped to 720 °C for the TMS-MPS, as compared to the 885 °C of the pristine SiO2. This is found to be mainly from the Si radicals formed from the decomposition of the surface TMS groups. Both experimental and computational results suggest a strong catalytic effect of the Si radicals on the CH4 dissociation. The surface engineering of SiO2 templates facilitates the synthesis of high-quality graphene sheets. As a result, the graphene-coated SiO2 composite exhibits a high electrical conductivity of 0.25 S cm-1. Moreover, the removal of the TMP-MPS template has released a graphene framework that replicates the parental TMS-MPS template on both micro- and nano- scales. This study provides tremendous insights into graphene growth chemistries as well as establishes a promising methodology for synthesizing graphene-based materials with pre-designed microstructures and porosity.

3.
Small ; : e2308066, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38057129

RESUMO

Porous carbons are important electrode materials for supercapacitors. One of the challenges associated with supercapacitors is improving their energy density without relying on pseudocapacitance, which is based on fast redox reactions that often shorten device lifetimes. A possible solution involves achieving high total capacitance (Ctot ), which comprises Helmholtz capacitance (CH ) and possibly quantum capacitance (CQ ), in high-surface carbon materials comprising minimally stacked graphene walls. In this work, a templating method is used to synthesize 3D mesoporous graphenes with largely identical pore structures (≈2100 m2 g-1 with an average pore size of ≈7 nm) but different concentrations of oxygen-containing functional groups (0.3-6.7 wt.%) and nitrogen dopants (0.1-4.5 wt.%). Thus, the impact of the heteroatom functionalities on Ctot is systematically investigated in an organic electrolyte excluding the effect of pore structures. It is found that heteroatom functionalities determine Ctot , resulting in the cyclic voltammetry curves being rectangular or butterfly-shaped. The nitrogen functionalities are found to significantly enhance Ctot owing to increased CQ .

4.
Chem Sci ; 14(32): 8448-8457, 2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37592983

RESUMO

The structural evolution of highly mesoporous templated carbons is examined from temperatures of 1173 to 2873 K to elucidate the optimal conditions for facilitating graphene-zipping reactions whilst minimizing graphene stacking processes. Mesoporous carbons comprising a few-layer graphene wall display excellent thermal stability up to 2073 K coupled with a nanoporous structure and three-dimensional framework. Nevertheless, advanced temperature-programmed desorption (TPD), X-ray diffraction, and Raman spectroscopy show graphene-zipping reactions occur at temperatures between 1173 and 1873 K. TPD analysis estimates zipping reactions lead to a 1100 fold increase in the average graphene-domain, affording the structure a superior chemical stability, electrochemical stability, and electrical conductivity, while increasing the bulk modulus of the framework. At above 2073 K, the carbon framework shows a loss of porosity due to the development of graphene-stacking structures. Thus, a temperature range between 1873 and 2073 K is preferable to balance the developed graphene domain size and high porosity. Utilizing a neutron pair distribution function and soft X-ray emission spectra, we prove that these highly mesoporous carbons already consist of a well-developed sp2-carbon network, and the property evolution is governed by the changes in the edge sites and stacked structures.

5.
ACS Appl Mater Interfaces ; 15(34): 40397-40408, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37590155

RESUMO

In lithium-oxygen batteries, although the porous carbon cathodes are widely utilized to tailor the properties of discharged Li2O2, the impact of nanopore size on the Li2O2 formation and decomposition reactions remain incompletely understood. Here, we provide the straightforward elucidation on the effect of pore size in a range of 25-200 nm, using a highly ordered porous cathode matrix based on the carbon-coated anodic aluminum oxide membrane formed on an Al substrate (C/AAO_Al). When the nanopore size is 25 nm, film-like Li2O2 with a thickness of 2-5 nm is formed, possibly via a surface-driven mechanism. When the nanochannel becomes larger, the Li2O2 film thickness saturates at ca. 10 nm, along with crystalline Li2O2 particles possibly formed by a solution-mediated mechanism.

6.
Adv Sci (Weinh) ; 10(16): e2300268, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37029464

RESUMO

The rational design of a stable and catalytic carbon cathode is crucial for the development of rechargeable lithium-oxygen (LiO2 ) batteries. An edge-site-free and topological-defect-rich graphene-based material is proposed as a pure carbon cathode that drastically improves LiO2 battery performance, even in the absence of extra catalysts and mediators. The proposed graphene-based material is synthesized using the advanced template technique coupled with high-temperature annealing at 1800 °C. The material possesses an edge-site-free framework and mesoporosity, which is crucial to achieve excellent electrochemical stability and an ultra-large capacity (>6700 mAh g-1 ). Moreover, both experimental and theoretical structural characterization demonstrates the presence of a significant number of topological defects, which are non-hexagonal carbon rings in the graphene framework. In situ isotopic electrochemical mass spectrometry and theoretical calculations reveal the unique catalysis of topological defects in the formation of amorphous Li2 O2 , which may be decomposed at low potential (∼ 3.6 V versus Li/Li+ ) and leads to improved cycle performance. Furthermore, a flexible electrode sheet that excludes organic binders exhibits an extremely long lifetime of up to 307 cycles (>1535 h), in the absence of solid or soluble catalysts. These findings may be used to design robust carbon cathodes for LiO2 batteries.

7.
Small ; 17(3): e2005564, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33350120

RESUMO

The precise control of the ice crystal growth during a freezing process is of essential importance for achieving porous cryogels with desired architectures. The present work reports a systematic study on the achievement of multi-structural cryogels from a binary dispersion containing 50 wt% 2,2,6,6-tetramethylpiperidin-1-oxyl, radical-mediated oxidized cellulose nanofibers (TOCNs), and 50 wt% graphene oxide (GO) via the unidirectional freeze-drying (UDF) approach. It is found that the increase in the sol's pH imparts better dispersion of the two components through increased electrostatic repulsion, while also causing progressively weaker gel networks leading to micro-lamella cryogels from the UDF process. At the pH of 5.2, an optimum between TOCN and GO self-aggregation and dispersion is achieved, leading to the strongest TOCN-GO interactions and their templating into the regular micro-honeycomb structures. A two-faceted mechanism for explaining the cryogel formation is proposed and it is shown that the interplay of the maximized TOCN-GO interactions and the high affinity of the dispersoid complexes for the ice crystals are necessary for obtaining a micro-honeycomb morphology along the freezing direction. Further, by linking the microstructure and rheology of the corresponding precursor sols, a diagram for predicting the microstructure of TOCN-GO cryogels obtained through the UDF process is proposed.

8.
Small ; 15(14): e1805363, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30821935

RESUMO

Aerogels are one of the most popular composite reinforcement materials because of their high porosity and their continuous and homogeneous network. Most aerogels are isotropic, thus leading to isotropic composites when they are used as fillers. This fundamentally limits their applications in areas where anisotropy is needed. Here, an anisotropic microhoneycomb cellulose nanofiber- (CellF)-carbon nanotube (CNT) aerogel (denoted MCCA) is reported that contains unidirectionally aligned penetrating microchannels, which is prepared by a unidirectional freeze-drying method, using the structure-directing function of the CellFs. Due to its anisotropic nature, MCCA-reinforced polydimethylsilexane (denoted MCCA/PDMS) shows distinct anisotropic behavior, with the electrical conductivity and Young's modulus along the direction of penetrating microchannels being approximately twice those in the orthogonal direction. MCCA/PDMS is used to make "directional" strain sensors with electrical resistance as the output signal. They demonstrate a 92% sensitivity difference between the microchannel direction and its orthogonal direction. This approach can be used to prepare anisotropic MCCA-based composites with other polymers for different applications.

9.
Adv Mater ; 31(8): e1805075, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30592336

RESUMO

Understanding the chemistry in the gelation (interfacial assembly) of graphene oxide (GO) is very essential for the practical uses of graphene-based materials. Herein, with the designed artificial interfaces due to the introduction of water-miscible isopropanol, the gelation of GO is achieved in water at an ultralow concentration (0.1 mg mL-1 , the lowest ever-reported) with a solvothermal treatment. Intrinsically, with a lower intercalation energy, water shows much stronger attraction with GO than isopropanol, inducing a microphase separation in the miscible mixture of isopropanol and water. In the solvothermal process, the partially reduced GO sheets interact with each other along the water-isopropanol interface and assemble into interconnected frameworks. In general, the formation of the artificial interface results in locally concentrated GO in the water phase, which is the final driving force for the gelation at ultralow concentration. Thus, the threshold for the GO gelation concentration is dependent upon the water fraction in the mixture and water acts as the spacer to facilitate the gelation and final control of the resulting materials microstructure. This study enriches interface/gelation chemistry of GO and indicates a practical way for precise structural control and scale-up preparation of graphene-based materials.

10.
Adv Sci (Weinh) ; 5(6): 1800384, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29938193

RESUMO

Lithium-sulfur (Li-S) batteries are considered as one of the most promising energy storage systems for next-generation electric vehicles because of their high-energy density. However, the poor cyclic stability, especially at a high sulfur loading, is the major obstacles retarding their practical use. Inspired by the nacre structure of an abalone, a similar configuration consisting of layered carbon nanotube (CNT) matrix and compactly embedded sulfur is designed as the cathode for Li-S batteries, which are realized by a well-designed unidirectional freeze-drying approach. The compact and lamellar configuration with closely contacted neighboring CNT layers and the strong interaction between the highly conductive network and polysulfides have realized a high sulfur loading with significantly restrained polysulfide shuttling, resulting in a superior cyclic stability and an excellent rate performance for the produced Li-S batteries. Typically, with a sulfur loading of 5 mg cm-2, the assembled batteries demonstrate discharge capacities of 1236 mAh g-1 at 0.1 C, 498 mAh g-1 at 2 C and moreover, when the sulfur loading is further increased to 10 mg cm-2 coupling with a carbon-coated separator, a superhigh areal capacity of 11.0 mAh cm-2 is achieved.

11.
J Vis Exp ; (135)2018 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-29889195

RESUMO

Monolithic honeycomb structures have been attractive to multidisciplinary fields due to their high strength-to-weight ratio. Particularly, microhoneycomb monoliths (MHMs) with micrometer-scale channels are expected as efficient platforms for reactions and separations because of their large surface areas. Up to now, MHMs have been prepared by a unidirectional freeze-drying (UDF) method only from very limited precursors. Herein, we report a protocol from which a series of MHMs consisting of different components can be obtained. Recently, we found that cellulose nanofibers function as a distinct structure-directing agent towards the formation of MHMs through the UDF process. By mixing the cellulose nanofibers with water soluble substances which do not yield MHMs, a variety of composite MHMs can be prepared. This significantly enriches the chemical constitution of MHMs towards versatile applications.


Assuntos
Celulose/química , Liofilização/métodos , Nanofibras/química
12.
Small ; 13(27)2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28544446

RESUMO

The sulfur content in carbon-sulfur hybrid using the melt-diffusion method is normally lower than 70 wt%, which greatly decreases the energy density of the cathode in lithium-sulfur (Li-S) batteries. Here, a scalable method inspired by the commercialized production of Na2 S is used to prepare a hierarchical porous carbon-sulfur hybrid (denoted HPC-S) with high sulfur content (≈85 wt%). The HPC-S is characterized by the structure of sulfur nanodots naturally embedded in a 3D carbon network. The strategy uses Na2 SO4 as the starting material, which serves not only as the sulfur precursor but also as a salt template for the formation of the 3D carbon network. The HPC-S cathode with such a high sulfur content shows excellent rate performance and cycling stability in Li-S batteries because of the sulfur nanoparticles, the unique carbon framework, and the strong interaction between them. The production method can also be readily scaled up and used in practical Li-S battery applications.

13.
Chem Asian J ; 12(5): 503-506, 2017 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-28098960

RESUMO

Controlling the microstructure of biomass-derived carbon is of essential importance for directing its use. Herein, a hollow spherical carbon (HSC) was prepared from corncob lignin through spray drying and subsequent heat treatment. The HSC, which is characterized by its hierarchically porous structure, delivers high rate capability when it is directly used as electrode material for supercapacitors. This strategy that uses lignin as the precursor avoids the intrinsic difficulty in tuning the microstructure of the biomass-derived carbons and is suitable for mass production for practical use.


Assuntos
Carbono/química , Lignina/química , Biomassa , Temperatura Alta , Tamanho da Partícula , Porosidade , Propriedades de Superfície
14.
ACS Nano ; 10(12): 10689-10697, 2016 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-27809476

RESUMO

Honeycomb structures have been attracting attention from researchers mainly for their high strength-to-weight ratio. As one type of structure, honeycomb monoliths having microscopically dimensioned channels have recently gained many achievements since their emergence. Inspired by the microhoneycomb structure that occurs in natural tree xylems, we have been focusing on the assembly of such a structure by using the major component in tree xylem, cellulose, as the starting material. Through the path that finally led us to the successful reconstruction of tree xylems by the unidirectional freeze-drying (UDF) approach, we verified the function of cellulose nanofibers, toward forming xylem-like monoliths (XMs). The strong tendency of cellulose nanofibers to form XMs through the UDF approach was extensively confirmed with surface grafting or a combination of a variety of second components (or even a third component). The resulting composite XMs were thus imparted with extra properties, which extends the versatility of this kind of material. Particularly, we demonstrated in this paper that XMs containing reduced graphene oxide (denoted as XM/rGO) could be used as strain sensors, taking advantage of their penetrating microchannels and the bulk elasticity property. Our methodology is flexible in its processing and could be utilized to prepare various functional composite XMs.

15.
Adv Mater ; 28(42): 9313-9319, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27572268

RESUMO

Breathable and wearable energy storage is achieved based on an innovative design solution. Carbon nanotube/MnO2 -decorated air-laid paper electrodes, with outstanding flexibility and good electrochemical performances, are prepared. They are then assembled into solid-state supercapacitors. By making through-holes on the supercapacitors, breathable and flexible supercapacitors are successfully fabricated.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...