Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 337: 139366, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37391078

RESUMO

Acid Mine Drainage (AMD) contains various metal/metalloid ions such as Fe, Cu, and As, which all impact seriously on mine ecosystems. Currently, the commonly used chemical methods for treating AMD may cause secondary pollution to appear in the environment. In this study, one-step simultaneous biomass synthesis of iron nanoparticles (Fe NPs) using tea extracts for the removal of heavy metals/metalloids in AMD is proposed. Characterizations revealed that the Fe NPs presented severely agglomerated particles with an average particle size of 119.80 ± 4.94 nm, on which various AMD-derived metal(loid)s, including As, Cu, and Ni, were uniformly dispersed. The biomolecules participating in the reaction in the tea extract were identified as polyphenols, organic acids, and sugars, which acted as complexing agents, reducing agents, covering/stabilizing agents, and promoted electron transfer. Meanwhile, the best reaction conditions (reaction time = 3.0 h, volume ratio of AMD and tea extract = 1.0:1.5, concentration of extract = 60 g/L, and T = 303 K) were obtained. Finally, the simultaneous formation of Fe NPs and their removal of heavy metals/metalloids from AMD was proposed, mainly involving the formation of Fe NPs and adsorption, co-precipitation, and reduction processes of heavy metals/metalloids.


Assuntos
Metaloides , Metais Pesados , Nanopartículas , Poluentes Químicos da Água , Ferro/química , Biomassa , Ecossistema , Metais Pesados/análise , Nanopartículas/química , Chá , Metaloides/análise , Poluentes Químicos da Água/análise
2.
Environ Sci Technol ; 57(15): 6119-6128, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-37017371

RESUMO

Synthetic phenolic antioxidants (SPAs) are a group of ubiquitous contaminants with multiple toxicities. However, current knowledge on the occurrence of SPAs in baby food and associated infant exposure is lacking. Herein, we analyzed three categories of baby food from China: infant formula, cereal, and puree, for a broad suite of 11 traditional and 19 novel SPAs. In addition to 11 traditional SPAs, up to 13 novel SPAs were detected in the baby food samples. The median concentrations of novel SPAs for infant formula, cereal, and puree were 604, 218, and 24.1 ng/g, respectively, surpassing those of traditional SPAs (53.4, 62.1, and 10.0 ng/g). The prevalent SPAs in the samples were butylated hydroxytoluene, 2,4-di-tert-butylphenol, pentaerythritol tetrakis[3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionate] (AO 1010), and octadecyl 3-(3,5-di-tert-butyl-4-hydroxyphenyl) propionate (AO 1076). Source analysis indicated that the prevalence of these four SPAs in baby food was associated with contamination of packaging materials, mechanical processing, or raw ingredients. Migration experiments demonstrated that contamination of plastic packaging constituted an important source. Exposure assessment suggested that there may be no appreciable health risk posed by the SPAs in baby food. Even so, baby food consumption was still a dominant pathway for infant exposure to SPAs, with a higher contribution than breast milk consumption, dust ingestion, dermal dust absorption, and air inhalation, which requires special attention.


Assuntos
Antioxidantes , Propionatos , Feminino , Lactente , Humanos , Prevalência , Propionatos/análise , Alimentos Infantis , China , Poeira/análise
3.
J Environ Sci (China) ; 128: 71-80, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36801043

RESUMO

Photoinitiators (PIs) are widely used in industrial polymerization processes. It has been reported that PIs are ubiquitous in indoor environments and that humans are exposed to PIs, but the occurrence of PIs in natural environments are rarely known. In the present study, 25 PIs, including 9 benzophenones (BZPs), 8 amine co-initiators (ACIs), 4 thioxanthones (TXs) and 4 phosphine oxides (POs), were analyzed in water and sediment samples collected from eight riverine outlets of the Pearl River Delta (PRD). Eighteen, 14, and 14 of the 25 target PIs were detected in water, suspended particulate matter (SPM) and sediment samples, respectively. The total concentrations of PIs in water, SPM, and sediment were in the ranges of 2.88‒96.1 ng/L, 9.25‒923 ng/g dry weight (dw), and 3.79‒56.9 ng/g dw, with geometric mean concentration (GM) of 10.8 ng/L, 48.6 ng/g dw, and 17.1 ng/g dw, respectively. A significant linear regression was observed between the log partitioning coefficients (Kd) values of PIs and their log octanol water partition coefficient (Kow) values (R2 = 0.535, p < 0.05). The annual riverine input of PIs to the coastal waters of the South China Sea via eight main outlets of the PRD was estimated to be 4.12 × 103 kg/year, and the ∑BZPs, ∑ACIs, ∑TXs and ∑POs contributed to 1.96 × 103, 1.24 × 103, 89.6 and 830 kg/year, respectively. This is the first report of a systematic description of the occurrence characteristics of PIs exposure in water, SPM, and sediment. The environmental fate and risks of PIs in aquatic environments need further investigations.


Assuntos
Rios , Poluentes Químicos da Água , Humanos , Material Particulado/análise , Água , Óxidos , Aminas , Poluentes Químicos da Água/análise , China , Benzofenonas , Monitoramento Ambiental , Sedimentos Geológicos
4.
Food Chem ; 375: 131663, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-34848092

RESUMO

This study presented a universal LC-MS/MS method for trace analysis of multiple synthetic phenolic antioxidants (SPAs) in foods by complementary use of electrospray ionization (ESI) and atmospheric pressure chemical ionization (APCI). The analytes included not only the well-known BHT and BHA but also 18 high molecular weight SPAs. The method utilized APCI to achieve sensitive analysis of BHT, Irganox 1010, Irganox 330, and Irganox 3125 based on the finding that APCI significantly improved the sensitivity of these weakly acidic or slightly polar SPAs, and utilized ESI to obtain sensitive analysis of other SPAs. Additionally, the method avoided background contamination by using effective measures including installation of a trapping column in the LC system. Method performance assessment showed satisfactory sensitivity, linearity, accuracy, and precision for analysis of SPAs in vegetable oil, milk powder, and baby fruit puree. Method application revealed widespread contamination of foods with BHT, Irganox 1010, and Irganox 1076.


Assuntos
Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem , Antioxidantes , Pressão Atmosférica , Cromatografia Líquida de Alta Pressão , Cromatografia Líquida , Frutas
5.
J Colloid Interface Sci ; 558: 106-114, 2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31585219

RESUMO

Green synthesis of nanoparticles is becoming increasingly popular as a simple and environmentally friendly method. In this study, iron-based nanoparticles (Fe-NPs) were successfully prepared using a peanut skin extract, where the peanut skin as an agricultural waste product was easy to obtain in large quantities, relatively inexpensive and also environmentally friendly. The average particle size of the produced Fe-NPs changed with their post-synthesis drying conditions. Under vacuum drying at 60 °C, the smallest average particle size obtained was 10.6 nm. The synthesized Fe-NPs had a core shell-like structure, in which the core was composed of Fe0, and the shell was a layered coating composed of biomolecules (e.g. anthocyanins, flavonols, phenolic compounds, epicatechin), iron oxides, Fe coordination compounds and iron-carbon alloys. Thereafter Fe-NPs (2 g L-1) prepared under different drying conditions were evaluated for their ability to remove Cr(VI) from aqueous solutions at pH of 4.7 and 25 °C. Fe-NPs obtained under vacuum drying at 60 °C performed the best, removing 100% of Cr(VI), from a 10 mg L-1 aqueous solution of Cr(VI) in just one min. Desorption and reuse experiments show that the desorption rate of Cr using 16 M hydrochloric acid and the recycling rate reached 70.2 and 59.9%, respectively. A potential mechanism for Fe NP synthesis involving the formation of intermediate complexes, an electron transfer reaction and adsorption of non-reducing organic macromolecules at the solid-liquid interfaces was proposed.


Assuntos
Arachis/química , Cromo/química , Ferro/química , Nanopartículas Metálicas/química , Extratos Vegetais/química , Poluentes Químicos da Água/química , Adsorção , Química Verde
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...