Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Tanaffos ; 16(1): 53-59, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28638425

RESUMO

BACKGROUND: Occupational exposure to dust leads to acute and chronic respiratory diseases, occupational asthma, and depressed lung function. In the light of a lack of comprehensive studies on the exposure of Iranian workers to wood dusts, the objective of this study was to monitor the occupational exposure to wood dust and bioaerosol, and their correlation with the lung function parameters in chipboard manufacturing industry workers. MATERIALS AND METHODS: A cross-sectional study was conducted on chipboard workers in Golestan Province; a total of 150 men (100 exposed cases and 50 controls) were assessed. Workers were monitored for inhalable wood dust and lung function parameters, i.e., FVC, FEV1, FEV1/FVC, and FEF25-75%. The workers' exposure to bioaerosols was measured using a bacterial sampler; a total of 68 area samples were collected. The analysis was performed using the Mann-Whitney, Kruskal-Wallis, and regression statistical tests. RESULTS: The geometric mean value and geometric standard deviation of inhalable wood dust for the exposed and control groups were 19 ± 2.00 mg/m3 and 0.008 ± 0.001 mg/m3, respectively. A statistically significant correlation was observed between the lung parameters and cumulative exposure to inhalable wood dust, whereas a statistically significant correlation was not observed between the lung parameters and bioaerosol exposure. However, the exposure of Iranian workers to bioaerosols was higher, compared to their foreign coworkers. CONCLUSION: Considering the high level of exposure among workers in this study along with their lung function results, long-term exposure to wood dust may be detrimental to the workers' health and steps to limit their exposure should be considered seriously.

2.
Tanaffos ; 13(3): 38-45, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25713590

RESUMO

BACKGROUND: In recent years, some studies have tried to improve Phase Contrast Microscopy (PCM) for counting asbestos fibers. Due to the lack of a universally accepted alternative method, this study aimed to improve PCM for better counting of asbestos fibers. MATERIALS AND METHODS: Confirmed asbestos standards were applied using a dust generator for sampling. Sampling from the dust generator was carried out according to the Occupational Safety and Health Administration (OSHA) ID-160 method and 95 samples with diverse densities were prepared to be counted using conventional and modern PCM. All samples were counted single blindly by a co-author of this study and the obtained data were analyzed by paired t-test, correlation coefficient and Bland-Altman analysis. Duplicate samples were prepared for qualitative analysis by Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM) and X ray. RESULTS: Asbestos densities on filters were in the range of less than 100 to 600 fibers/mm(2). Statistically, significant differences were observed for the count density of the 95 samples counted by the two phase contrast microscopes (P<0.001). Nikon microscope demonstrated higher counts compared to conventional microscope and had a lower coefficient of variation. Samples were analyzed qualitatively using FT-IR and SEM, and the presence of asbestos fibers was confirmed. CONCLUSION: The improved PCM and FT-IR methods presented in this study demonstrated more precise and accurate determination of personal exposure to airborne asbestos fibers and subsequent risk assessment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...