Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Oncol ; 14: 1357801, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38425341

RESUMO

Introduction: Chimeric Antigen Receptor (CAR) T cell therapy has demonstrated remarkable success in treating hematological malignancies. However, its efficacy against solid tumors, including cervical cancer, remains a challenge. Hypoxia, a common feature of the tumor microenvironment, profoundly impacts CAR T cell function, emphasizing the need to explore strategies targeting hypoxia-inducible factor-1α (HIF-1α). Methods: In this study, we evaluated the effects of the HIF-1α inhibitor PX-478 on mesoCAR T cell function through in-silico and in vitro experiments. We conducted comprehensive analyses of HIF-1α expression in cervical cancer patients and examined the impact of PX-478 on T cell proliferation, cytokine production, cytotoxicity, and exhaustion markers. Results: Our in-silico analyses revealed high expression of HIF-1α in cervical cancer patients, correlating with poor prognosis. PX-478 effectively reduced HIF-1α levels in T and HeLa cells. While PX-478 exhibited dose-dependent inhibition of antigen-nonspecific T and mesoCAR T cell proliferation, it had minimal impact on antigen-specific mesoCAR T cell proliferation. Notably, PX-478 significantly impaired the cytotoxic function of mesoCAR T cells and induced terminally exhausted T cells. Discussion: Our results underscore the significant potential and physiological relevance of the HIF-1α pathway in determining the fate and function of both T and CAR T cells. However, we recognize the imperative for further molecular investigations aimed at unraveling the intricate downstream targets associated with HIF-1α and its influence on antitumor immunity, particularly within the context of hypoxic tumors. These insights serve as a foundation for the careful development of combination therapies tailored to counter immunosuppressive pathways within hypoxic environments and fine-tune CAR T cell performance in the intricate tumor microenvironment.

2.
Mol Cancer ; 22(1): 183, 2023 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-37974170

RESUMO

Chimeric antigen receptor (CAR) NK and T cell therapy are promising immunotherapeutic approaches for the treatment of cancer. However, the efficacy of CAR NK/T cell therapy is often hindered by various factors, including the phenomenon of trogocytosis, which involves the bidirectional exchange of membrane fragments between cells. In this review, we explore the role of trogocytosis in CAR NK/T cell therapy and highlight potential strategies for its modulation to improve therapeutic efficacy. We provide an in-depth analysis of trogocytosis as it relates to the fate and function of NK and T cells, focusing on its effects on cell activation, cytotoxicity, and antigen presentation. We discuss how trogocytosis can mediate transient antigen loss on cancer cells, thereby negatively affecting the effector function of CAR NK/T cells. Additionally, we address the phenomenon of fratricide and trogocytosis-associated exhaustion, which can limit the persistence and effectiveness of CAR-expressing cells. Furthermore, we explore how trogocytosis can impact CAR NK/T cell functionality, including the acquisition of target molecules and the modulation of signaling pathways. To overcome the negative effects of trogocytosis on cellular immunotherapy, we propose innovative approaches to modulate trogocytosis and augment CAR NK/T cell therapy. These strategies encompass targeting trogocytosis-related molecules, engineering CAR NK/T cells to resist trogocytosis-induced exhaustion and leveraging trogocytosis to enhance the function of CAR-expressing cells. By overcoming the limitations imposed by trogocytosis, it may be possible to unleash the full potential of CAR NK/T therapy against cancer. The knowledge and strategies presented in this review will guide future research and development, leading to improved therapeutic outcomes in the field of immunotherapy.


Assuntos
Neoplasias , Receptores de Antígenos Quiméricos , Humanos , Células Matadoras Naturais , Trogocitose , Imunoterapia Adotiva , Linfócitos T , Receptores de Antígenos Quiméricos/metabolismo , Neoplasias/metabolismo , Terapia Baseada em Transplante de Células e Tecidos
3.
Front Immunol ; 14: 1212695, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37675121

RESUMO

Despite chimeric antigen receptor (CAR) T cell therapy's extraordinary success in subsets of B-cell lymphoma and leukemia, various barriers restrict its application in solid tumors. This has prompted investigating new approaches for producing CAR T cells with superior therapeutic potential. Emerging insights into the barriers to CAR T cell clinical success indicate that autophagy shapes the immune response via reprogramming cellular metabolism and vice versa. Autophagy, a self-cannibalization process that includes destroying and recycling intracellular components in the lysosome, influences T cell biology, including development, survival, memory formation, and cellular metabolism. In this review, we will emphasize the critical role of autophagy in regulating and rewiring metabolic circuits in CAR T cells, as well as how the metabolic status of CAR T cells and the tumor microenvironment (TME) alter autophagy regulation in CAR T cells to restore functional competence in CAR Ts traversing solid TMEs.


Assuntos
Leucemia , Receptores de Antígenos Quiméricos , Humanos , Autofagia , Reações Cruzadas , Lisossomos , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...