Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Commun (Camb) ; 57(92): 12329-12332, 2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34740232

RESUMO

Herein, we document a self-assembling octyl-TPP tagged esculetin (Mito-Esc) as functionally active and as a novel small molecule siRNA delivery vector. While Mito-Esc itself induces selective breast cancer cell death, the amphiphilic nature of Mito-Esc delivers therapeutic siRNAs intracellularly without the need for any excipient to exacerbate the anti-proliferative effects.


Assuntos
Mitocôndrias , RNA Interferente Pequeno , Linhagem Celular Tumoral , Humanos , Mitocôndrias/metabolismo , RNA de Cadeia Dupla , Umbeliferonas
2.
Free Radic Biol Med ; 118: 85-97, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29499335

RESUMO

Lipids are responsible for the atheromatous plaque formation during atherosclerosis by their deposition in the subendothelial intima of the aorta, leading to infarction. Sterol regulatory element-binding protein 2 (SREBP2), regulating cholesterol homeostasis, is suggested to play a pivotal role during the early incidence of atherosclerosis through dysregulation of lipid homeostasis. Here we demonstrate that oxidative stress stimulates SREBP2-mediated cholesterol uptake via low density lipoprotein receptor (LDLR), rather than cholesterol synthesis, in mouse vascular aortic smooth muscle cells (MOVAS) and THP-1 monocytes. The enhancement of mature form of SREBP2 (SREBP2-M) during oxidative stress was associated with the inhibition of AMP-activated protein kinase (AMPK) activation. In contrast, inhibition of either SREBP2 by fatostatin or LDLR by siLDLR resulted in decreased cholesterol levels during oxidative stress. Thereby confirming the role of SREBP2 in cholesterol regulation via LDLR. Metformin-mediated activation of AMPK was able to significantly abrogate cholesterol uptake by inhibiting SREBP2-M. Interestingly, although metformin administration attenuated angiotensin (Ang)-II-impaired lipid homeostasis in both aorta and liver tissues of ApoE-/- mice, the results indicate that SREBP2 through LDLR regulates lipid homeostasis in aorta but not in liver tissue. Taken together, AMPK activation inhibits oxidative stress-mediated SREBP2-dependent cholesterol uptake, and moreover, metformin-induced prevention of atheromatic events are in part due to its ability to regulate the SREBP2-LDLR axis.


Assuntos
Aterosclerose/metabolismo , Colesterol/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Proteína de Ligação a Elemento Regulador de Esterol 2/metabolismo , Animais , Aorta/metabolismo , Células Cultivadas , Homeostase/efeitos dos fármacos , Humanos , Hipoglicemiantes/farmacologia , Metabolismo dos Lipídeos/fisiologia , Masculino , Metformina/farmacologia , Camundongos , Camundongos Knockout , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/metabolismo , Estresse Oxidativo/fisiologia , Receptores de LDL/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...