Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; : e202409969, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38924219

RESUMO

Crystalline materials exhibiting non-centrosymmetry and possessing substantial surface dipole moments play a critical role in piezoelectricity. Designing biocompatible self-assembled materials with these attributes is particularly challenging when compared to inorganic materials and ceramics. In this study, we elucidate the crystal conformations of novel cyclic peptides that exhibit self-assembly into tubular structures characterized by unidirectional hydrogen bonding and piezoelectric properties. Unlike cyclic peptides derived from alternating L- and D-amino acids, those derived from new δ-amino acids demonstrate the formation of self-assembled tubes with unidirectional hydrogen bonds. Further, the tightly packed tubular assemblies and higher macrodipole moments result in superior piezoelectric coefficients compared to peptides with lower macrodipole moments. Our findings underscore the potential for designing cyclic peptides with unidirectional hydrogen bonds, thereby paving the way for their application in design of biocompatible piezo- and ferroelectric materials.

2.
Chemistry ; 29(72): e202303135, 2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-37867145

RESUMO

Metals play an important role in the structure and functions of various proteins. The combination of metal ions and peptides have been emerging as an attractive field to create advanced structures and biomaterials. Here, we are reporting the anion-influenced, silver ion coordinated diverse networks of designed short tripeptide 310 -helices with terminal pyridyl groups. The short peptides adopted classical right-handed, left-handed and 310 EL -helical conformations in the presence of different silver salts. The peptides have displayed conformational flexibility to accommodate different sizes and interactions of anions to yield a variety of metal-coordinated networks. The complexes of metal ions and peptides have shown different porous networks, right- and left-handed helical polymers, transformation of helix into superhelix and 2 : 2 metal-peptide macrocycles. Further, the metal-peptide crystals with inherent dipoles of helical peptides gave striking second harmonic generation response. The optical energy upconversion from NIR to red and green light is demonstrated. Overall, we have shown the utilization of short 310 -helices for the construction of diverse metal-coordinated helical networks and notable non-linear optical effects.


Assuntos
Peptídeos , Prata , Peptídeos/química , Conformação Molecular , Ânions
3.
Chemistry ; 29(42): e202300479, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37199015

RESUMO

Development of miniaturized lab-on-chip devices for the detection of rapid and specific small molecule-protein binding interactions at very low concentrations holds significant importance in drug discovery and biomedical applications. Here, the label-free detection of small molecule-protein interactions is reported on the surface functionalizable nanotubes of α,γ-hybrid peptide helical foldamers using nanoscale capacitance and impedance spectroscopy. The 12-helix conformation of the α,γ-hybrid peptide observed in the single crystals, self-assembled into nanotubes in an aqueous environment with exposed cysteine thiols for small molecule conjugation. The binding of streptavidin to the covalently linked biotin on the surface of nanotubes was detected at the picomolar concentrations. No change in the capacitance and impedance were observed in the absence of either immobilized biotin or protein streptavidin. The functionalizable hybrid peptide nanotubes reported here pave the way for the label-free detection of various small molecule protein interactions at very low concentrations.


Assuntos
Biotina , Nanotubos , Estreptavidina/química , Biotina/química , Nanotubos/química , Peptídeos/química , Proteínas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...