Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
IEEE Int Conf Rehabil Robot ; 2019: 337-342, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31374652

RESUMO

This paper presents the development of a pneumatically actuated soft robotic based bilateral therapy system for hand rehabilitation in post-stroke patients. The goal is to use a healthy hand to guide the motion of the paretic hand using a sensorized glove and a robotic exoskeleton, respectively. The sensorized glove tracks the motion of the healthy hand and provides inputs for the soft robotic hand exoskeleton to apply mimicking motion to the paretic hand. Two control algorithms, PD flow-based and adaptive PD pressure-based position controls, were developed and tested. Initial tests confirmed the ability of the systems to apply bilateral therapy. Furthermore, the adaptive pressure-based controller showed better performance with overall error reduced by 25.8% with respect to the flow-based controller. Future studies will include feasibility and performance of the system for applying therapy to post-stroke patients.


Assuntos
Desenho de Equipamento , Exoesqueleto Energizado , Mãos/fisiopatologia , Aprendizagem , Paresia/reabilitação , Robótica , Reabilitação do Acidente Vascular Cerebral , Humanos , Reabilitação do Acidente Vascular Cerebral/instrumentação , Reabilitação do Acidente Vascular Cerebral/métodos
2.
Med Eng Phys ; 69: 17-27, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31208854

RESUMO

A sensorized air cell-based seat cushion system was developed to address the issues of loading magnitude and duration at a sitting interface to aid in reducing risk of sitting acquired pressure ulcers. This system is capable of pressure mapping, redistribution, and offloading which were verified using an anthropomorphic model and a human subject. The system is comprised of an air cell array cushion, a pneumatic control unit, and a graphical user interface. ISO load deflection testing confirmed that the cushion's loading response is comparable to commercial air cell-based seat cushions. Testing demonstrated that the internal pressure of the air cells are indicative of interface pressure and can be used as input to pressure modulating algorithms. Uniform pressure distribution was achieved through automated pressure redistribution algorithm implementation where the immersion of a subject into the seat cushion increased and interface pressure decreased. High pressure point identification and automatic offloading were performed in which newly created high pressure points were addressed using subsequent redistribution. Pressure mapping enabled offloading and redistribution can objectively manage the effects of loading magnitude and duration at the sitting interface.


Assuntos
Desenho de Equipamento , Úlcera por Pressão/prevenção & controle , Pressão , Automação , Fenômenos Biomecânicos , Úlcera por Pressão/fisiopatologia , Suporte de Carga
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...