Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
AAPS PharmSciTech ; 24(7): 191, 2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37726576

RESUMO

Recently three-dimensional bioprinting (3D-bioP) has emerged as a revolutionary technique for numerous biomedical applications. 3D-bioP has facilitated the printing of advanced and complex human organs resulting in satisfactory therapeutic practice. One of the important biomedical applications of 3D-bioP is in tissue engineering, wound healing, and prosthetics. 3D-bioP is basically aimed to restore the natural extracellular matrix of human's damage due to wounds. The relevant search was explored using various scientific database, viz., PubMed, Web of Science, Scopus, and ScienceDirect. The objective of this review is to emphasize interpretations from the pre-executed studies and to assess the worth of employing 3D-bioP in wound healing as well as prosthetics in terms of patient compliance, clinical outcomes, and economic viability. Furthermore, the benefits of applying 3D-bioP in wound healing over traditional methods have been covered along with the biocompatible biomaterials employed as bioinks has been discussion. Additionally, the review expands about the clinical trials in 3D-bioP field, showing promise of biomedical applicability of this technique with growing advancement in recent years.


Assuntos
Próteses e Implantes , Cicatrização , Humanos , Materiais Biocompatíveis , Bases de Dados Factuais , Impressão Tridimensional
2.
Sci Total Environ ; 779: 146492, 2021 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-34030250

RESUMO

The mapping of debris in glacierized terrain is required for managing the water resources, glacier mass-balance studies and the monitoring of glacier health. Two types of debris i.e. Supraglacial debris (SGD) and periglacial debris (PGD) are derived from the same source i.e., surrounding valley rock and have similar reflectance which makes it difficult to differentiate between them. Hence, in this study a novel integrated approach is proposed where spectral information and thermal data from Landsat 8 Satellite image in conjunction with geomorphometric and topographic parameters extracted from SRTM DEM are utilized to classify SGD and PGD along with other classes in Chandra River Basin (CRB) covering the area of 2422.1 km2 in western Himalayas. Nearly one fourth of the study area is glacierized region while SGD and PGD cover nearly 7% of the study area. Accuracy of the classified data is assessed through comparison with manually digitized data set and minimal difference in area is observed. Results are validated with high resolution (10 m) Sentinel 2a image and data collected from field observations. The SGD is precisely demarcated with 93% accuracy with an overall 83.50% accuracy of classification. Thus, this work presents an efficient, better and prompt method for classifying glacierized areas more effectively than manual delineation at basin/sub-basin level.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...