Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Arthritis Res Ther ; 26(1): 53, 2024 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-38368390

RESUMO

BACKGROUND: Understanding of pain in osteoarthritis, its genesis, and perception is still in its early stages. Identification of precise ligand-receptor pairs that transduce pain and the cells and tissues in which they reside will elucidate new therapeutic approaches for pain management. Our recent studies had identified an inflammation-amplifying (Inf-A) cell population that is expanded in human OA cartilage and is distinctive in the expression of both IL1R1 and TNF-R2 receptors and active Jnk signaling cascade. METHODS: In this study, we have tested the function of the cartilage-resident IL1R1+TNF-R2+ Inf-A cells in OA. We have identified that the IL1R1+TNF-R2+ Inf-A cells expand in aged mice as well as after anterior cruciate ligament tear upon tibia loading and OA initiation in mice. We targeted and modulated the Jnk signaling cascade in InfA through competitive inhibition of Jnk signaling in mice and human OA explants and tested the effects on joint structure and gait in mice. RESULTS: Modulation of Jnk signaling led to attenuation of inflammatory cytokines CCL2 and CCL7 without showing any structural improvements in the joint architecture. Interestingly, Jnk inhibition and lowered CCL2 and 7 are sufficient to significantly improve the gait parameters in treated PTOA mice demonstrating reduced OA-associated pain. Consistent with the mice data, treatment with JNK inhibitor did not improve human OA cartilage explants. CONCLUSION: These studies demonstrate that Inf-A, an articular-cartilage resident cell population, contributes to pain in OA via secretion of CCL2 and 7 and can be targeted via inhibition of Jnk signaling.


Assuntos
Cartilagem Articular , Osteoartrite , Humanos , Camundongos , Animais , Receptores Tipo II do Fator de Necrose Tumoral/metabolismo , Receptores Tipo II do Fator de Necrose Tumoral/farmacologia , Receptores Tipo II do Fator de Necrose Tumoral/uso terapêutico , Modelos Animais de Doenças , Osteoartrite/metabolismo , Cartilagem Articular/metabolismo , Dor/etiologia , Dor/metabolismo , Inflamação/metabolismo
2.
Arthritis Rheumatol ; 76(2): 216-230, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37610277

RESUMO

OBJECTIVE: Adult skeletal stem cells (SSCs) that give rise to chondrocytes, osteocytes, and stromal cells as progeny have been shown to contribute to cartilage regeneration in osteoarthritis (OA). Understanding extrinsic and intrinsic regulators of SSC fate and function can therefore identify putative candidate factors to enhance cartilage regeneration. This study explores how the DNA hydroxymethylase Tet1 regulates SSC function in OA. METHODS: We investigated the differences in the SSC lineage tree and differentiation potential in neonatal and adult Tet1+/+ and Tet1-/- mice with and without injury and upon OA induction and progression. Using RNA sequencing, the transcriptomic differences between SSCs and bone cartilage stroma progenitor cells (BCSPs) were identified in Tet1+/+ mice and Tet1-/- mice. RESULTS: Loss of Tet1 skewed the SSC lineage tree by expanding the SSC pool and enhanced the chondrogenic potential of SSCs and BCSPs. Tet1 inhibition led to enhanced chondrogenesis in human SSCs and chondroprogenitors isolated from human cartilage. Importantly, TET1 inhibition in vivo in late stages of a mouse model of OA led to increased cartilage regeneration. Transcriptomic analyses of SSCs and BCSPs lacking Tet1 revealed pathway alterations in transforming growth factor ß signaling, melatonin degradation, and cartilage development-associated genes. Lastly, we report that use of the hormone melatonin can dampen inflammation and improve cartilage health. CONCLUSION: Although Tet1 is a broad epigenetic regulator, melatonin can mimic the inhibition ability of TET1 to enhance the chondrogenic ability of SSCs. Melatonin administration has the potential to be an attractive stem cell-based therapy for cartilage regeneration.


Assuntos
Melatonina , Células-Tronco Mesenquimais , Osteoartrite , Adulto , Humanos , Camundongos , Animais , Melatonina/metabolismo , Células-Tronco Mesenquimais/metabolismo , Cartilagem/metabolismo , Células-Tronco/metabolismo , Condrócitos/metabolismo , Diferenciação Celular/genética , Osteoartrite/genética , Condrogênese , Oxigenases de Função Mista/metabolismo , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo
3.
Nat Rev Rheumatol ; 20(1): 7-20, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38057475

RESUMO

Advances in the profiling of human joint tissues at single-cell resolution have provided unique insights into the organization and function of these tissues in health and disease. Data generated by various single-cell technologies, including single-cell RNA sequencing and cytometry by time-of-flight, have identified the distinct subpopulations that constitute these tissues. These timely studies have provided the building blocks for the construction of single-cell atlases of joint tissues including cartilage, bone and synovium, leading to the identification of developmental trajectories, deciphering of crosstalk between cells and discovery of rare populations such as stem and progenitor cells. In addition, these studies have revealed unique pathogenetic populations that are potential therapeutic targets. The use of these approaches in synovial tissues has helped to identify how distinct cell subpopulations can orchestrate disease initiation and progression and be responsible for distinct pathological outcomes. Additionally, repair of tissues such as cartilage and meniscus remains an unmet medical need, and single-cell methodologies can be invaluable in providing a blueprint for both effective tissue-engineering strategies and therapeutic interventions for chronic joint diseases such as osteoarthritis and rheumatoid arthritis.


Assuntos
Artrite Reumatoide , Menisco , Osteoartrite , Humanos , Artrite Reumatoide/terapia , Artrite Reumatoide/patologia , Osteoartrite/patologia , Membrana Sinovial/patologia , Engenharia Tecidual/métodos
4.
Mol Cancer Res ; 17(5): 1063-1074, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30814128

RESUMO

The forkhead box transcription factor FoxM1 is essential for hepatocellular carcinoma (HCC) development, and its overexpression coincides with poor prognosis. Here, we show that the mechanisms by which FoxM1 drives HCC progression involve overcoming the inhibitory effects of the liver differentiation gene FoxA2. First, the expression patterns of FoxM1 and FoxA2 in human HCC are opposite. We show that FoxM1 represses expression of FoxA2 in G1 phase. Repression of FoxA2 in G1 phase is important, as it is capable of inhibiting expression of the pluripotency genes that are expressed mainly in S-G2 phases. Using a transgenic mouse model for oncogenic Ras-driven HCC, we provide genetic evidence for a repression of FoxA2 by FoxM1. Conversely, FoxA2 inhibits expression of FoxM1 and inhibits FoxM1-induced tumorigenicity. Also, FoxA2 inhibits Ras-induced HCC progression that involves FoxM1. IMPLICATIONS: The observations provide strong genetic evidence for an opposing role of FoxM1 and FoxA2 in HCC progression. Moreover, FoxM1 drives high-grade HCC progression partly by inhibiting the hepatocyte differentiation gene FoxA2.


Assuntos
Carcinoma Hepatocelular/patologia , Proteína Forkhead Box M1/metabolismo , Fator 3-beta Nuclear de Hepatócito/metabolismo , Neoplasias Hepáticas/patologia , Proteínas Proto-Oncogênicas p21(ras)/genética , Animais , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Ciclo Celular , Linhagem Celular Tumoral , DNA (Citosina-5-)-Metiltransferases/metabolismo , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Células Hep G2 , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Camundongos , Camundongos Transgênicos , Gradação de Tumores , Neoplasias Experimentais , Proteína do Retinoblastoma/metabolismo , DNA Metiltransferase 3B
5.
Sci Rep ; 8(1): 15850, 2018 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-30374061

RESUMO

A correction has been published and is appended to both the HTML and PDF versions of this paper. The error has not been fixed in the paper.

6.
Sci Rep ; 7: 46017, 2017 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-28387346

RESUMO

FoxM1b is a cell cycle-regulated transcription factor, whose over-expression is a marker for poor outcome in cancers. Its transcriptional activation function requires phosphorylation by Cdk1 or Cdk2 that primes FoxM1b for phosphorylation by Plk1, which triggers association with the co-activator CBP. FoxM1b also possesses transcriptional repression function. It represses the mammary differentiation gene GATA3 involving DNMT3b and Rb. We investigated what determines the two distinct functions of FoxM1b: activation and repression. We show that Rb binds to the C-terminal activation domain of FoxM1b. Analyses with phospho-defective and phospho-mimetic mutants of FoxM1b identified a critical role of the Plk1 phosphorylation sites in regulating the binding of FoxM1b to Rb and DNMT3b. That is opposite of what was seen for the interaction of FoxM1b with CBP. We show that, in addition to GATA3, FoxM1b also represses the mammary luminal differentiation marker FoxA1 by promoter-methylation, and that is regulated by the Plk1 phosphorylation sites in FoxM1b. Our results show that the Plk1 phosphorylation sites in FoxM1b serve as a regulator for its repressor function, and they provide insights into how FoxM1b inhibits differentiation genes and activates proliferation genes during cancer progression.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteína Forkhead Box M1/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Repressoras/metabolismo , Proteína do Retinoblastoma/metabolismo , Sítios de Ligação , DNA (Citosina-5-)-Metiltransferases/metabolismo , Metilação de DNA/genética , Proteína Forkhead Box M1/química , Fator de Transcrição GATA3/genética , Humanos , Células MCF-7 , Mutação/genética , Fragmentos de Peptídeos/metabolismo , Fosforilação , Regiões Promotoras Genéticas , Ligação Proteica , Domínios Proteicos , Sialoglicoproteínas/metabolismo , DNA Metiltransferase 3B , Quinase 1 Polo-Like
7.
J Hepatol ; 63(2): 429-36, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25828473

RESUMO

BACKGROUND & AIMS: Overexpression of FoxM1 correlates with poor prognosis in hepatocellular carcinoma (HCC). Moreover, the Ras-signaling pathway is found to be ubiquitously activated in HCC through epigenetic silencing of the Ras-regulators. We investigated the roles of FoxM1 in Ras-driven HCC, and on HCC cells with stem-like features. METHODS: We employed a transgenic mouse model that expresses the oncogenic Ras in the liver. That strain was crossed with a strain that harbor floxed alleles of FoxM1 and the MxCre gene that allows conditional deletion of FoxM1. FoxM1 alleles were deleted after development of HCC, and the effects on the tumors were analyzed. Also, FoxM1 siRNA was used in human HCC cell lines to determine its role in the survival of the HCC cells with stem cell features. RESULTS: Ras-driven tumors overexpress FoxM1. Deletion of FoxM1 inhibits HCC progression. There was increased accumulation of reactive oxygen species (ROS) in the FoxM1 deleted HCC cells. Moreover, FoxM1 deletion caused a disproportionate loss of the CD44+ and EpCAM+ HCC cells in the tumors. We show that FoxM1 directly activates expression of CD44 in human HCC cells. Moreover, the human HCC cells with stem cell features are addicted to FoxM1 for ROS-regulation and survival. CONCLUSION: Our results provide genetic evidence for an essential role of FoxM1 in the progression of Ras-driven HCC. In addition, FoxM1 is required for the expression of CD44 in HCC cells. Moreover, FoxM1 plays a critical role in the survival of the HCC cells with stem cell features by regulating ROS.


Assuntos
Carcinogênese/genética , Carcinoma Hepatocelular/genética , Fatores de Transcrição Forkhead/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas/genética , Células-Tronco/patologia , Proteínas ras/genética , Animais , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Proliferação de Células , Progressão da Doença , Proteína Forkhead Box M1 , Fatores de Transcrição Forkhead/biossíntese , Humanos , Imuno-Histoquímica , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Prognóstico , Transdução de Sinais , Células-Tronco/metabolismo , Proteínas ras/biossíntese
8.
Int J Radiat Biol ; 89(12): 1017-27, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23859363

RESUMO

PURPOSE: To investigate the underlying mechanisms of cell-death at extremely high doses of radiation in radioresistant Spodoptera frugiperda-9 (Sf9) insect cells. MATERIALS AND METHODS: Morphology, cell proliferation and DNA-fragmentation analysis was performed at 500-2000 Gy. Changes in intracellular reactive oxygen species (ROS), mitochondrial membrane potential (MMP), cardiolipin oxidation and Annexin-V externalization were studied using flow-cytometry. Cytochrome-c release was measured using immunofluorescence microscopy. Inhibitors of apoptosis, i.e., Bongkrekic acid (BKA), Caspase-9 inhibitor (C9i), 5-(4-fluorosulfonylbenzoyl) adenosine hydrochloride (FSBA) and Cyclosporin-A (CsA) were used to dissect apoptotic mechanism at many classical steps. Caspase-3 activity was measured using a caspase-activity assay kit. RESULTS: A dose-dependent induction of typical apoptosis was observed at extremely high doses, marked by extensive apoptotic body formation. However, certain atypical responses such as cellular hypertrophy and the lack of phosphatidylserine-externalization were observed during the initial hours after radiation. Loss of mitochondrial membrane potential observed at 48 h following a 2000 Gy dose was accompanied by an increase in ROS that caused significant cardiolipin oxidation leading to cytochrome-c release, caspase activation and internucleosomal DNA fragmentation. Inhibitors of B-cell lymphoma-2 (Bcl-2)-associated X protein (Bax)-mediated cytochrome-c release, apoptosome formation and caspase-9 effectively prevented radiation-induced apoptosis, strongly suggesting the role of Bax-dependent cell death mechanism. CONCLUSIONS: Our study demonstrates that the Sf9 insect cells display good homology with human cells in the mitochondria-dependent events during radiation-induced apoptosis, although doses eliciting similar responses were 50-200 times higher than human cells. Factors upstream to mitochondrial damage remain pertinent for a thorough understanding of this extreme radioresistance displayed by lepidopteran cells.


Assuntos
Apoptose/efeitos da radiação , Raios gama , Tolerância a Radiação , Proteína X Associada a bcl-2/metabolismo , Adenosina/análogos & derivados , Adenosina/química , Animais , Anexina A5/metabolismo , Ácido Bongcréquico/química , Cardiolipinas/metabolismo , Caspase 3/metabolismo , Caspase 9/metabolismo , Proliferação de Células/efeitos da radiação , Ciclosporina/química , Fragmentação do DNA/efeitos da radiação , Relação Dose-Resposta à Radiação , Potenciais da Membrana , Membranas Mitocondriais/metabolismo , Oxigênio/química , Espécies Reativas de Oxigênio/metabolismo , Células Sf9 , Spodoptera
9.
Cytotechnology ; 64(1): 9-14, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21948063

RESUMO

Conventional DNA ladder assay has certain shortcomings such as loss of DNA fragments during sample processing, involvement of multiple steps and requirement of expensive reagents. The present study demonstrates a rapid, easy-to-perform cost-effective method for detection of apoptotic DNA fragments with considerable improvement in the sensitivity by avoiding loss of DNA fragments. It involves a few minutes of procedure involving direct lysis of cells with dimethyl sulphoxide (DMSO), brief vortexing, addition of 2% SDS-TE buffer, and a single step of centrifugation. This cost- and time-efficient method reduces the assay time considerably and can be used for a large number of samples with excellent sensitivity.

10.
Bioinformation ; 5(1): 21-7, 2010 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-21346874

RESUMO

Certain insects (e.g., moths and butterflies; order Lepidoptera) and nematodes are considered as excellent experimental models to study the cellular stress signaling mechanisms since these organisms are far more stress-resistant as compared to mammalian system. Multiple factors have been implicated in this unusual response, including the oxidative stress response mechanisms. Radiation or chemical-induced mitochondrial oxidative stress occurs through damage caused to the components of electron transport chain (ETC) leading to leakage of electrons and generation of superoxide radicals. This may be countered through quick replacement of damaged mitochondrial proteins by upregulated expression. Since the ETC comprises of various proteins coded by mitochondrial DNA, variation in the composition, expressivity and regulation of mitochondrial genome could greatly influence mitochondrial role under oxidative stress conditions. Therefore, we carried out in silico analysis of mitochondrial DNA in these organisms and compared it with that of the stress-sensitive humans/mammals. Parameters such as mitochondrial genome organization, codon bias, gene expressivity and GC(3) content were studied. Gene arrangement and Shine-Dalgarno (SD) sequence patterns indicating translational regulation were distinct in insect and nematodes as compared to humans. A higher codon bias (ENC≫35) and lower GC(3) content (≫0.20) were observed in mitochondrial genes of insect and nematodes as compared to humans (ENC>42; GC3>0.20), coupled with low codon adaptation index among insects. These features indeed favour higher expressivity of mitochondrial proteins and might help maintain the mitochondrial physiology under stress conditions. Therefore, our study indicates that mitochondrial genome organization may influence stress-resistance of insects and nematodes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...