Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 200
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-39022211

RESUMO

Aim and background: Hepatitis B virus is one of the leading underlying causes of chronic liver disease. Rapid diagnostic tests with improved sensitivity and specificity for detecting hepatitis B infection could aid in large-scale community screening in resource-limited settings. This study was designed to assess the clinical performance of a rapid card test to detect HBsAg. Materials and methods: In this study, archived once-thawed serum samples were tested on the Determine HBsAg 2 card and their performance was evaluated in reference to a chemiluminescence-based assay (HBsAg qualitative assay, Abbott Diagnostics, US). Results: A total of 120 patient samples (46 confirmed HBsAg-positive and 74 confirmed HBsAg-negative) were used in this study. The overall median age of the study population was 44 years (IQR: 36-51 years), with a male gender predominance (90%). A specificity of 100% (74/74) and sensitivity of 84.7% (39/46) was observed for the Determine HBsAg 2 assay compared with the reference assay. The samples that showed false-negative results (n = 7) by the card test had HBsAg levels below the limit-of-detection of the card assay. Conclusion: The Determine HBsAg 2 assay gives rapid results in 15 minutes with good sensitivity and specificity. This makes it a good, affordable tool for large-scale screening and public health surveillance programs. Clinical significance: Accurate and cost-effective rapid card tests for early detection of Hepatitis B infection would enable quick isolation of infected cases, thus reducing transmission in the community. How to cite this article: Samal J, Soni A, Pandey A, et al. Performance Evaluation of Determine HBsAg 2 Rapid Card Test for the Detection of Hepatitis B Surface Antigen in Clinical Samples. Euroasian J Hepato-Gastroenterol 2024;14(1):9-11.

2.
Environ Monit Assess ; 196(8): 720, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38985219

RESUMO

Managing e-waste involves collecting it, extracting valuable metals at low costs, and ensuring environmentally safe disposal. However, monitoring this process has become challenging due to e-waste expansion. With IoT technology like LoRa-LPWAN, pre-collection monitoring becomes more cost-effective. Our paper presents an e-waste collection and recovery system utilizing the LoRa-LPWAN standard, integrating intelligence at the edge and fog layers. The system incentivizes WEEE holders, encouraging participation in the innovative collection process. The city administration oversees this process using innovative trucks, GPS, LoRaWAN, RFID, and BLE technologies. Analysis of IoT performance factors and quantitative assessments (latency and collision probability on LoRa, Sigfox, and NB-IoT) demonstrate the effectiveness of our incentive-driven IoT solution, particularly with LoRa standard and Edge AI integration. Additionally, cost estimates show the advantage of LoRaWAN. Moreover, the proposed IoT-based e-waste management solution promises cost savings, stakeholder trust, and long-term effectiveness through streamlined processes and human resource training. Integration with government databases involves data standardization, API development, security measures, and functionality testing for efficient management.


Assuntos
Resíduo Eletrônico , Gerenciamento de Resíduos , Gerenciamento de Resíduos/métodos , Inteligência Artificial , Monitoramento Ambiental/métodos , Internet das Coisas , Conservação dos Recursos Naturais/métodos
3.
JCI Insight ; 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38885337

RESUMO

Genetic defects affecting steroid biosynthesis cause cortisol deficiency and differences of sex development; among them recessive mutations in the steroidogenic enzymes CYP11A1 and CYP11B, whose function is supported by reducing equivalents donated by ferredoxin reductase (FDXR) and ferredoxin. So far, mutations in the mitochondrial flavoprotein FDXR have been associated with a progressive neuropathic mitochondriopathy named FDXR-Related Mitochondriopathy (FRM), but cortisol insufficiency has not been documented. However, FRM patients often experience worsening or demise following stress associated with infections. We investigated two female FRM patients carrying the novel homozygous FDXR mutation p.G437R with ambiguous genitalia at birth and sudden death in the first year of life; they presented with cortisol deficiency and androgen excess compatible with 11-hydroxylase deficiency. In addition, steroidogenic FDXR-variant cell lines reprogrammed from three FRM patients' fibroblasts displayed deficient mineralocorticoid and glucocorticoid production. Finally, Fdxr-mutant mice allelic to the severe p.R386W human variant, showed reduced progesterone and corticosterone production. Therefore, our comprehensive studies show that human FDXR variants may cause compensated, but possibly life-threatening adrenocortical insufficiency in stress by affecting adrenal glucocorticoid and mineralocorticoid synthesis through direct enzyme inhibition, most likely in combination with disturbed mitochondrial redox balance.

4.
J Endocrinol ; 262(3)2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38913505

RESUMO

Biallelic variants of steroidogenic acute regulatory protein (STAR/STARD1) may cause primary adrenal insufficiency and 46,XY disorder of sex development. STAR plays a pivotal role in transporting cholesterol into mitochondria where cholesterol serves as an essential substrate for initiating steroid biosynthesis by its conversion to pregnenolone. Generally, loss-of-function mutations of STAR cause the classic form of lipoid congenital adrenal hyperplasia (LCAH) where steroidogenesis of the adrenal cortex and the gonads is severely affected. By contrast, partial activity of STAR causes a less severe phenotype, the non-classic LCAH, which is characterized by later onset and initial manifestation with isolated adrenal insufficiency only. Disease-causing STAR variants are very rare. Numerous variants of all types have been described worldwide. Prevailing variants have been reported from Japan and Korea and in some population clusters where STAR is more common. Genotype-phenotype correlation is pretty good for STAR variants. While the exact mechanisms of cholesterol transport into mitochondria for steroidogenesis are still under investigation, the important role of STAR in this process is evident by inactivating STAR variants causing LCAH. The mechanism of disease with STAR deficiency is best described by a two-hit model: the first hit relates to impaired cholesterol import into mitochondria and thus lack of substrate for all steroid hormone biosynthesis; the second hit then relates to massive cytoplasmic lipid overload (evidenced by typically enlarged and fatty adrenal glands) leading to cell death and organ destruction. This review summarizes phenotype and genotype characteristics of human STAR variants found through the ClinVar database.


Assuntos
Hiperplasia Suprarrenal Congênita , Transtorno 46,XY do Desenvolvimento Sexual , Estudos de Associação Genética , Fosfoproteínas , Humanos , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Hiperplasia Suprarrenal Congênita/genética , Hiperplasia Suprarrenal Congênita/metabolismo , Transtorno 46,XY do Desenvolvimento Sexual/genética , Insuficiência Adrenal/genética , Insuficiência Adrenal/metabolismo , Mutação , Colesterol/metabolismo , Fenótipo
5.
Pharmaceutics ; 16(5)2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38794299

RESUMO

Curcumin, a polyphenol with a rich history spanning two centuries, has emerged as a promising therapeutic agent targeting multiple signaling pathways and exhibiting cellular-level activities that contribute to its diverse health benefits. Extensive preclinical and clinical studies have demonstrated its ability to enhance the therapeutic potential of various bioactive compounds. While its reported therapeutic advantages are manifold, predominantly attributed to its antioxidant and anti-inflammatory properties, its efficacy is hindered by poor bioavailability stemming from inadequate absorption, rapid metabolism, and elimination. To address this challenge, nanodelivery systems have emerged as a promising approach, offering enhanced solubility, biocompatibility, and therapeutic effects for curcumin. We have analyzed the knowledge on curcumin nanoencapsulation and its synergistic effects with other compounds, extracted from electronic databases. We discuss the pharmacokinetic profile of curcumin, current advancements in nanoencapsulation techniques, and the combined effects of curcumin with other agents across various disorders. By unifying existing knowledge, this analysis intends to provide insights into the potential of nanoencapsulation technologies to overcome constraints associated with curcumin treatments, emphasizing the importance of combinatorial approaches in improving therapeutic efficacy. Finally, this compilation of study data aims to inform and inspire future research into encapsulating drugs with poor pharmacokinetic characteristics and investigating innovative drug combinations to improve bioavailability and therapeutic outcomes.

6.
Elife ; 122024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38593125

RESUMO

Inflammation in ulcerative colitis is typically restricted to the mucosal layer of distal gut. Disrupted mucus barrier, coupled with microbial dysbiosis, has been reported to occur prior to the onset of inflammation. Here, we show the involvement of vesicular trafficking protein Rab7 in regulating the colonic mucus system. We identified a lowered Rab7 expression in goblet cells of colon during human and murine colitis. In vivo Rab7 knocked down mice (Rab7KD) displayed a compromised mucus layer, increased microbial permeability, and depleted gut microbiota with enhanced susceptibility to dextran sodium-sulfate induced colitis. These abnormalities emerged owing to altered mucus composition, as revealed by mucus proteomics, with increased expression of mucin protease chloride channel accessory 1 (CLCA1). Mechanistically, Rab7 maintained optimal CLCA1 levels by controlling its lysosomal degradation, a process that was dysregulated during colitis. Overall, our work establishes a role for Rab7-dependent control of CLCA1 secretion required for maintaining mucosal homeostasis.


Assuntos
Colite , Células Caliciformes , Animais , Humanos , Camundongos , Canais de Cloreto/genética , Canais de Cloreto/metabolismo , Colite/induzido quimicamente , Colite/metabolismo , Colo/metabolismo , Modelos Animais de Doenças , Células Caliciformes/metabolismo , Homeostase , Inflamação/metabolismo , Mucosa Intestinal/metabolismo , Camundongos Endogâmicos C57BL
7.
Front Immunol ; 15: 1302163, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38515752

RESUMO

Mechanistic understanding of antibiotic persistence is a prerequisite in controlling the emergence of MDR cases in Tuberculosis (TB). We have reported that the cholesterol-induced activation of VapC12 ribonuclease is critical for disease persistence in TB. In this study, we observed that relative to the wild type, mice infected with ΔvapC12 induced a pro-inflammatory response, had a higher pathogen load, and responded better to the anti-TB treatment. In a high-dose infection model, all the mice infected with ΔvapC12 succumbed early to the disease. Finally, we reported that the above phenotype of ΔvapC12 was dependent on the presence of the TLR4 receptor. Overall, the data suggests that failure of a timely resolution of the early inflammation by the ΔvapC12 infected mice led to hyperinflammation, altered T-cell response and high bacterial load. In conclusion, our findings suggest the role of the VapC12 toxin in modulating the innate immune response of the host in ways that favor the long-term survival of the pathogen inside the host.


Assuntos
Mycobacterium tuberculosis , Ribonucleases , Tuberculose , Animais , Camundongos , Imunidade Inata , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/patogenicidade , Fenótipo , Toxinas Biológicas , Tuberculose/imunologia , Tuberculose/metabolismo , Ribonucleases/genética , Ribonucleases/metabolismo
8.
Int J Mol Sci ; 25(6)2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38542117

RESUMO

Rabson-Mendenhall syndrome (RMS) is a rare autosomal recessive disorder characterized by severe insulin resistance, resulting in early-onset diabetes mellitus. We report the first case of RMS in a Paraguayan patient. The patient is a 6-year-old girl who presented with hypertrichosis, acanthosis nigricans, nephrocalcinosis, and elevated levels of glucose and insulin that served as diagnostic indicators for RMS. Genetic testing by next-generation sequencing (NGS) revealed two pathogenic variants in exons 2 and 19 of the INSR gene: c.332G>T (p.Gly111Val) and c.3485C>T (p.Ala1162Val), in combined heterozygosis. The novel INSR c. 332G>T variant leads to the substitution of glycine to valine at position 111 in the protein, and multiple in silico software programs predicted it as pathogenic. The c.3485C>T variant leads to the substitution of alanine to valine at position 1162 in the protein previously described for insulin resistance and RMS. The management of RMS is particularly challenging in children, and the use of metformin is often limited by its side effects. The patient was managed with nutritional measures due to the early age of onset. This report expands the knowledge of RMS to the Paraguayan population and adds a novel pathogenic variant to the existing literature.


Assuntos
Síndrome de Donohue , Resistência à Insulina , Criança , Feminino , Humanos , Síndrome de Donohue/diagnóstico , Resistência à Insulina/genética , Receptor de Insulina/genética , Receptor de Insulina/metabolismo , Mutação , Valina/genética , Antígenos CD/genética
9.
Environ Monit Assess ; 196(3): 279, 2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38367185

RESUMO

Efficient waste management is essential for human well-being and environmental health, as neglecting proper disposal practices can lead to financial losses and the depletion of natural resources. Given the rapid urbanization and population growth, developing an automated, innovative waste classification model becomes imperative. To address this need, our paper introduces a novel and robust solution - a smart waste classification model that leverages a hybrid deep learning model (Optimized DenseNet-121 + SVM) to categorize waste items using the TrashNet datasets. Our proposed approach uses the advanced deep learning model DenseNet-121, optimized for superior performance, to extract meaningful features from an expanded TrashNet dataset. These features are subsequently fed into a support vector machine (SVM) for precise classification. Employing data augmentation techniques further enhances classification accuracy while mitigating the risk of overfitting, especially when working with limited TrashNet data. The results of our experimental evaluation of this hybrid deep learning model are highly promising, with an impressive accuracy rate of 99.84%. This accuracy surpasses similar existing models, affirming the efficacy and potential of our approach to revolutionizing waste classification for a sustainable and cleaner future.


Assuntos
Aprendizado Profundo , Humanos , Monitoramento Ambiental , Saúde Ambiental , Recursos Naturais , Crescimento Demográfico
10.
Biochim Biophys Acta Gene Regul Mech ; 1867(2): 195017, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38341138

RESUMO

Alternative splicing (AS) is a fundamental post-transcriptional process in eukaryotes, enabling a single gene to generate diverse mRNA transcripts, thereby enhancing protein variability. This process involves the excision of introns and the joining of exons in pre-mRNA(s) to form mature mRNA. The resulting mature mRNAs exhibit various combinations of exons, contributing to functional diversity. Dysregulation of AS can substantially modulate protein functions, impacting the onset and progression of numerous diseases, including cancer. Non-coding RNAs (ncRNAs) are distinct from protein-coding RNAs and consist of short and long types. Long non-coding RNAs (lncRNAs) play an important role in regulating several cellular processes, particularly alternative splicing, according to new research. This review provides insight into the latest discoveries concerning how lncRNAs influence alternative splicing within the realm of breast cancer. Additionally, it explores potential therapeutic strategies focused on targeting lncRNAs.


Assuntos
Processamento Alternativo , Neoplasias da Mama , Regulação Neoplásica da Expressão Gênica , RNA Longo não Codificante , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Humanos , Neoplasias da Mama/genética , Feminino
11.
Biomolecules ; 14(2)2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38397440

RESUMO

Endocrine-disrupting chemicals (EDCs) may impact the development of prostate cancer (PCa) by altering the steroid metabolism. Although their exact mechanism of action in controlling tumor growth is not known, EDCs may inhibit steroidogenic enzymes such as CYP17A1 or CYP19A1 which are involved in the production of androgens or estrogens. High levels of circulating androgens are linked to PCa in men and Polycystic Ovary Syndrome (PCOS) in women. Essential oils or their metabolites, like lavender oil and tea tree oil, have been reported to act as potential EDCs and contribute towards sex steroid imbalance in cases of prepubertal gynecomastia in boys and premature thelarche in girls due to the exposure to lavender-based fragrances. We screened a range of EO components to determine their effects on CYP17A1 and CYP19A1. Computational docking was performed to predict the binding of essential oils with CYP17A1 and CYP19A1. Functional assays were performed using the radiolabeled substrates or Liquid Chromatography-High-Resolution Mass Spectrometry and cell viability assays were carried out in LNCaP cells. Many of the tested compounds bind close to the active site of CYP17A1, and (+)-Cedrol had the best binding with CYP17A1 and CYP19A1. Eucalyptol, Dihydro-ß-Ionone, and (-)-α-pinene showed 20% to 40% inhibition of dehydroepiandrosterone production; and some compounds also effected CYP19A1. Extensive use of these essential oils in various beauty and hygiene products is common, but only limited knowledge about their potential detrimental side effects exists. Our results suggest that prolonged exposure to some of these essential oils may result in steroid imbalances. On the other hand, due to their effect on lowering androgen output and ability to bind at the active site of steroidogenic cytochrome P450s, these compounds may provide design ideas for novel compounds against hyperandrogenic disorders such as PCa and PCOS.


Assuntos
Óleos Voláteis , Síndrome do Ovário Policístico , Masculino , Humanos , Feminino , Androgênios/metabolismo , Hormônios Esteroides Gonadais , Óleos Voláteis/farmacologia , Esteroides/metabolismo , Síndrome do Ovário Policístico/patologia , Sistema Enzimático do Citocromo P-450
12.
PLoS One ; 19(2): e0297191, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38300925

RESUMO

Greyhounds metabolize cytochrome P450 (CYP) 2B11 substrates more slowly than other dog breeds. However, CYP2B11 gene variants associated with decreased CYP2B11 expression do not fully explain reduced CYP2B11 activity in this breed. P450 oxidoreductase (POR) is an essential redox partner for all CYPs. POR protein variants can enhance or repress CYP enzyme function in a CYP isoform and substrate dependent manner. The study objectives were to identify POR protein variants in greyhounds and determine their effect on coexpressed CYP2B11 and CYP2D15 enzyme function. Gene sequencing identified two missense variants (Glu315Gln and Asp570Glu) forming four alleles, POR-H1 (reference), POR-H2 (570Glu), POR-H3 (315Gln, 570Glu) and POR-H4 (315Gln). Out of 68 dog breeds surveyed, POR-H2 was widely distributed across multiple breeds, while POR-H3 was largely restricted to greyhounds and Scottish deerhounds (35% allele frequencies), and POR-H4 was rare. Three-dimensional protein structure modelling indicated significant effects of Glu315Gln (but not Asp570Glu) on protein flexibility through loss of a salt bridge between Glu315 and Arg519. Recombinant POR-H1 (reference) and each POR variant (H2-H4) were expressed alone or with CYP2B11 or CYP2D15 in insect cells. No substantial effects on POR protein expression or enzyme activity (cytochrome c reduction) were observed for any POR variant (versus POR-H1) when expressed alone or with CYP2B11 or CYP2D15. Furthermore, there were no effects on CYP2B11 or CYP2D15 protein expression, or on CYP2D15 enzyme kinetics by any POR variant (versus POR-H1). However, Vmax values for 7-benzyloxyresorufin, propofol and bupropion oxidation by CYP2B11 were significantly reduced by coexpression with POR-H3 (by 34-37%) and POR-H4 (by 65-72%) compared with POR-H1. Km values were unaffected. Our results indicate that the Glu315Gln mutation (common to POR-H3 and POR-H4) reduces CYP2B11 enzyme function without affecting at least one other major canine hepatic P450 (CYP2D15). Additional in vivo studies are warranted to confirm these findings.


Assuntos
Sistema Enzimático do Citocromo P-450 , Farmacogenética , Cães , Animais , Sistema Enzimático do Citocromo P-450/genética , Frequência do Gene , Microssomos Hepáticos/metabolismo , Mutação , Variação Genética
13.
Tuberculosis (Edinb) ; 145: 102477, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38211498

RESUMO

Mycobacterium tuberculosis (Mtb) has evolved sophisticated surveillance mechanisms to neutralize the ROS-induces toxicity which otherwise would degrade a variety of biological molecules including proteins, nucleic acids and lipids. In the present study, we find that Mtb lacking the Rv0495c gene (ΔRv0495c) is presented with a highly oxidized cytosolic environment. The superoxide-induced lipid peroxidation resulted in altered colony morphology and loss of membrane integrity in ΔRv0495c. As a consequence, ΔRv0495c demonstrated enhanced susceptibility when exposed to various host-induced stress conditions. Further, as expected, we observed a mutant-specific increase in the abundance of transcripts that encode proteins involved in antioxidant defence. Surprisingly, despite showing a growth defect phenotype in macrophages, the absence of the Rv0495c enhanced the pathogenicity and augmented the ability of the Mtb to grow inside the host. Additionally, our study revealed that Rv0495c-mediated immunomodulation by the pathogen helps create a favorable niche for long-term survival of Mtb inside the host. In summary, the current study underscores the fact that the truce in the war between the host and the pathogen favours long-term disease persistence in tuberculosis. We believe targeting Rv0495c could potentially be explored as a strategy to potentiate the current anti-TB regimen.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Humanos , Proteínas de Bactérias/metabolismo , Tuberculose/microbiologia , Oxirredução , Homeostase/fisiologia
14.
Life Sci ; 339: 122416, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38216120

RESUMO

AIM: Telomerase expression is unique to cancer cells, making it a promising target for therapy. However, a major drawback of telomerase inhibition is that it affects cancer cell proliferation only when telomeres shorten, creating a lag phase post-continuous drug treatment. Acute cytotoxicity of telomerase inhibitors is dependent on their ability to induce DNA damage. p53 senses DNA damage and is the primary effector required for sensitizing cells towards apoptosis. MAIN METHODS: Isogenic p53+/+ and p53-/- ovarian cancer cell lines were generated using the CRISPR/Cas9 system and the anti-cancer effect of telomerase inhibitors MST-312 and BIBR1532 were determined. Flow cytometry, real-time PCR, and western blot were performed to study cell cycle, apoptosis, and gene expression. KEY FINDINGS: We report that MST-312 exhibits p53-dependent cytotoxicity, while BIBR1532 exhibits p53-independent cytotoxicity. Colony-forming ability also confirms the p53-dependent effect of MST-312. Re-expression of p53 in p53-/- cells could rescue MST-312 sensitivity. In p53+/+ cells, MST-312 causes S phase arrest and activation of p53-dependent target genes like anti-apoptosis markers (Fas and Puma) and cell cycle markers (p21 and cyclinB). In p53-/- cells, MST-312 causes S/G2/M arrest. BIBR1532 induces S/G2/M phase cell cycle arrest irrespective of p53 status. This correlates with the expression of the DNA damage marker (γ-H2AX). Long-term continuous treatment with MST-312 or BIBR1532 results in p53-independent telomere shortening. SIGNIFICANCE: In summary, we demonstrate that acute anti-cancer effects of MST-312 are dependent on p53 expression. Hence, it is important to consider the p53 expression status in cancer cells when selecting and administering telomerase inhibitors.


Assuntos
Aminobenzoatos , Benzamidas , Naftalenos , Neoplasias , Telomerase , Telomerase/genética , Telomerase/metabolismo , Proteína Supressora de Tumor p53/genética , Fatores de Transcrição/metabolismo , Linhagem Celular Tumoral , Inibidores Enzimáticos/farmacologia , Apoptose , Neoplasias/tratamento farmacológico , Neoplasias/genética
15.
Biochimie ; 219: 74-83, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37619809

RESUMO

Glioblastoma (GBM) is the most aggressive and frequent type of primary brain cancer in adult patients. One of the key molecular features associated with GBM pathogenesis is the dysfunction of PTEN oncosuppressor. In addition to PTEN gene, humans and several primates possess processed PTEN pseudogene (PTENP1) that gives rise to long non-coding RNA lncPTENP1-S. Regulation and functions of PTEN and PTENP1 are highly interconnected, however, the exact molecular mechanism of how these two genes affect each other remains unclear. Here, we analyzed the methylation level of the CpG islands (CpGIs) in the promoter regions of PTEN and PTENP1 in patient-derived GBM neurospheres. We found that increased PTEN methylation corelates with decreased PTEN mRNA level. Unexpectedly, we showed the opposite trend for PTENP1. Using targeted methylation and demethylation of PTENP1 CpGI, we demonstrated that DNA methylation increases lncPTENP1-S expression in the presence of wild type PTEN protein but decreases lncPTENP1-S expression if PTEN protein is absent. Further experiments revealed that PTEN protein binds to PTENP1 promoter region and inhibits lncPTENP1-S expression if its CpGI is demethylated. Interestingly, we did not detect any effect of lncPTENP1-S on the level of PTEN mRNA, indicating that in GBM cells PTENP1 is a downstream target of PTEN rather than its upstream regulator. Finally, we studied the functions of lncPTENP1-S and demonstrated that it plays a pro-oncogenic role in GBM cells by upregulating the expression of cancer stem cell markers and decreasing cell adhesion.


Assuntos
Glioblastoma , MicroRNAs , Adulto , Animais , Humanos , MicroRNAs/metabolismo , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Pseudogenes , Metilação de DNA , Glioblastoma/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
16.
Adv Biol (Weinh) ; 8(1): e2300349, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37786307

RESUMO

Solubilizing extracellular matrix (ECM) materials and transforming them into hydrogels has expanded their potential applications both in vitro and in vivo. In this study, hydrogels are prepared by decellularization of human placental tissue using detergent and enzymes and by the subsequent creation of a homogenized acellular placental tissue powder (P-ECM). A perfusion-based decellularization approach is employed using detergent and enzymes. The P-ECM with and without gamma irradiation is then utilized to prepare P-ECM hydrogels. Physical and biological evaluations are conducted to assess the suitability of the P-ECM hydrogels for biocompatibility. The decellularized tissue has significantly reduced cellular content and retains the major ECM proteins. Increasing the concentration of P-ECM leads to improved mechanical properties of the P-ECM hydrogels. The biocompatibility of the P-ECM hydrogel is demonstrated through cell proliferation and viability assays. Notably, gamma-sterilized P-ECM does not support the formation of a stable hydrogel. Nonetheless, the use of HCl during the digestion process effectively decreases spore growth and bacterial bioburden. The study demonstrates that P-ECM hydrogels exhibit physical and biological attributes conducive to soft tissue reconstruction. These hydrogels establish a favorable microenvironment for cell growth and the need for investigating innovative sterilization methods.


Assuntos
Detergentes , Hidrogéis , Feminino , Gravidez , Humanos , Hidrogéis/farmacologia , Detergentes/metabolismo , Placenta , Matriz Extracelular/metabolismo , Bioensaio
17.
Biomolecules ; 13(12)2023 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-38136599

RESUMO

Cytochrome P450 oxidoreductase (POR) is an essential redox partner for steroid and drug-metabolizing cytochromes P450 located in the endoplasmic reticulum. Mutations in POR lead to metabolic disorders, including congenital adrenal hyperplasia, and affect the metabolism of steroids, drugs, and xenobiotics. In this study, we examined approximately 450 missense variants of the POR gene listed in the Genome Aggregation Database (gnomAD) using eleven different in silico prediction tools. We found that 64 novel variants were consistently predicted to be disease-causing by most tools. To validate our findings, we conducted a population analysis and selected two variations in POR for further investigation. The human POR wild type and the R268W and L577P variants were expressed in bacteria and subjected to enzyme kinetic assays using a model substrate. We also examined the activities of several cytochrome P450 proteins in the presence of POR (WT or variants) by combining P450 and reductase proteins in liposomes. We observed a decrease in enzymatic activities (ranging from 35% to 85%) of key drug-metabolizing enzymes, supported by POR variants R288W and L577P compared to WT-POR. These results validate our approach of curating a vast amount of data from genome projects and provide an updated and reliable reference for diagnosing POR deficiency.


Assuntos
Sistema Enzimático do Citocromo P-450 , NADPH-Ferri-Hemoproteína Redutase , Humanos , NADPH-Ferri-Hemoproteína Redutase/genética , NADPH-Ferri-Hemoproteína Redutase/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Mutação , Mutação de Sentido Incorreto , Oxirredução , Esteroides
19.
Commun Biol ; 6(1): 935, 2023 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-37704701

RESUMO

A recently emerged sub-lineage of Omicron, BA.5, together with BA.4, caused a fifth wave of coronavirus disease (COVID-19) in South Africa and subsequently emerged as a predominant strain globally due to its high transmissibility. The lethality of BA.5 infection has not been studied in an acute hACE2 transgenic (hACE2.Tg) mouse model. Here, we investigated tissue-tropism and immuno-pathology induced by BA.5 infection in hACE2.Tg mice. Our data show that intranasal infection of BA.5 in hACE2.Tg mice resulted in attenuated pulmonary infection and pathology with diminished COVID-19-induced clinical and pathological manifestations. BA.5, similar to Omicron (B.1.1.529), infection led to attenuated production of inflammatory cytokines, anti-viral response and effector T cell response as compared to the ancestral strain of SARS-CoV-2, Wuhan-Hu-1. We show that mice recovered from B.1.1.529 infection showed robust protection against BA.5 infection associated with reduced lung viral load and pathology. Together, our data provide insights as to why BA.5 infection escapes previous SARS-CoV-2 exposure induced-T cell immunity but may result in milder immuno-pathology and alleviated chances of re-infectivity in Omicron-recovered individuals.


Assuntos
COVID-19 , Camundongos , Animais , Camundongos Transgênicos , SARS-CoV-2 , Citocinas , Modelos Animais de Doenças
20.
Front Pharmacol ; 14: 1244597, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37711177

RESUMO

Breast cancer is the most common malignancy in women worldwide and despite significant advancements in detection, treatment, and management of cancer, it is still the leading cause of malignancy related deaths in women. Understanding the fundamental biology of breast cancer and creating fresh diagnostic and therapeutic strategies have gained renewed focus in recent studies. In the onset and spread of breast cancer, a group of enzymes known as kinases are extremely important. Small-molecule kinase inhibitors have become a promising class of medications for the treatment of breast cancer owing to their capacity to specifically target kinases involved in the growth and progression of cancer. The creation of targeted treatments that block these kinases and the signalling pathways that they activate has completely changed how breast cancer is treated. Many of these targeted treatments have been approved for the treatment of breast cancer as clinical trials have demonstrated their great efficacy. CDK4/6 inhibitors, like palbociclib, abemaciclib, and ribociclib, EGFR inhibitors such as gefitinib and erlotinib and HER2-targeting small-molecule kinases like neratinib and tucatinib are some examples that have shown potential in treating breast cancer. Yet, there are still difficulties in the development of targeted medicines for breast cancer, such as figuring out which patient subgroups may benefit from these therapies and dealing with drug resistance problems. Notwithstanding these difficulties, kinase-targeted treatments for breast cancer still have a lot of potential. The development of tailored medicines will continue to be fuelled by the identification of novel targets and biomarkers for breast cancer as a result of advancements in genomic and proteomic technology.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...