Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 62(37): 14931-14941, 2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37650771

RESUMO

Activation of C-H bonds using an earth-abundant metal catalyst is one of the top challenges of chemistry, where high-valent Mn/Fe-oxo(hydroxo) biomimic species play an important role. There are several open questions related to the comparative oxidative abilities of these species, and a unifying concept that could accommodate various factors influencing reactivity is lacking. To shed light on these open questions, here, we have used a combination of density functional theory (DFT) (B3LYP-D3/def2-TZVP) and ab initio (CASSCF/NEVPT2) calculations to study a series of high-valent metal-oxo species [Mn+H3buea(O/OH)] (M = Mn and Fe, n = II to V; H3buea = tris[(N'-tert-butylureaylato)-N-ethylene)]aminato towards the activation of dihydroanthracene (DHA). The H-bonding network in the ligand architecture influences the ground state-excited state gap and brings several excited states of the same spin multiplicity closer in energy, which triggers reactivity via one of those excited states, reducing the kinetic barriers for the C-H bond activation and rationalizing several puzzling reactivity trends observed in various high-valent Mn/Fe-oxo(hydroxo) species.

2.
bioRxiv ; 2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-37215018

RESUMO

Existing parenteral SARS-CoV-2 vaccines produce only limited mucosal responses, which are essential for reducing transmission and achieving sterilizing immunity. Appropriately designed mucosal boosters could overcome the shortcomings of parenteral vaccines and enhance pre- existing systemic immunity. Here we present a new protein subunit nanovaccine using multiadjuvanted (e.g. RIG-I: PUUC, TLR9: CpG) polysaccharide-amino acid-lipid nanoparticles (PAL-NPs) that can be delivered both intramuscularly (IM) and intranasally (IN) to generate balanced mucosal-systemic SARS-CoV-2 immunity. Mice receiving IM-Prime PUUC+CpG PAL- NPs, followed by an IN-Boost, developed high levels of IgA, IgG, and cellular immunity in the lung, and showed robust systemic humoral immunity. Interestingly, as a purely intranasal vaccine (IN-Prime/IN-Boost), PUUC+CpG PAL-NPs induced stronger lung-specific T cell immunity than IM-Prime/IN-Boost, and a comparable IgA and neutralizing antibodies, although with a lower systemic antibody response, indicating that a fully mucosal delivery route for SARS-CoV-2 vaccination may also be feasible. Our data suggest that PUUC+CpG PAL-NP subunit vaccine is a promising candidate for generating SARS-CoV-2 specific mucosal immunity.

3.
Biomaterials ; 297: 122097, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37001347

RESUMO

Lung-resident and circulatory lymphoid, myeloid, and stromal cells, expressing various pattern recognition receptors (PRRs), detect pathogen- and danger-associated molecular patterns (PAMPs/DAMPs), and defend against respiratory pathogens and injuries. Here, we report the early responses of murine lungs to nanoparticle-delivered PAMPs, specifically the retinoic acid-inducible gene I (RIG-I) agonist poly-U/UC (PUUC), with or without the TLR4 agonist monophosphoryl lipid A (MPLA). Using cellular indexing of transcriptomes and epitopes by sequencing (CITE-seq), we characterized the responses at 4 and 24 h after intranasal administration. Within 4 h, ribosome-associated transcripts decreased in both stromal and immune cells, followed by widespread interferon-stimulated gene (ISG) expression. Using RNA velocity, we show that lung-neutrophils dynamically regulate the synthesis of cytokines like CXCL-10, IL-1α, and IL-1ß. Co-delivery of MPLA and PUUC increased chemokine synthesis and upregulated antimicrobial binding proteins targeting iron, manganese, and zinc in many cell types, including fibroblasts, endothelial cells, and epithelial cells. Overall, our results elucidate the early PAMP-induced cellular responses in the lung and demonstrate that stimulation of the RIG-I pathway, with or without TLR4 agonists, induces a ubiquitous microbial defense state in lung stromal and immune cells. Nanoparticle-delivered combination PAMPs may have applications in intranasal antiviral and antimicrobial therapies and prophylaxis.


Assuntos
Receptor 4 Toll-Like , Transcriptoma , Animais , Camundongos , Células Endoteliais , Moléculas com Motivos Associados a Patógenos , Cinética , Imunidade Inata , Pulmão
4.
J Control Release ; 347: 476-488, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35577151

RESUMO

Despite success in vaccinating populations against SARS-CoV-2, concerns about immunity duration, continued efficacy against emerging variants, protection from infection and transmission, and worldwide vaccine availability remain. Molecular adjuvants targeting pattern recognition receptors (PRRs) on antigen-presenting cells (APCs) could improve and broaden the efficacy and durability of vaccine responses. Native SARS-CoV-2 infection stimulates various PRRs, including toll-like receptors (TLRs) and retinoic acid-inducible gene I (RIG-I)-like receptors. We hypothesized that targeting PRRs using molecular adjuvants on nanoparticles (NPs) along with a stabilized spike protein antigen could stimulate broad and efficient immune responses. Adjuvants targeting TLR4 (MPLA), TLR7/8 (R848), TLR9 (CpG), and RIG-I (PUUC) delivered on degradable polymer NPs were combined with the S1 subunit of spike protein and assessed in vitro with isogeneic mixed lymphocyte reactions (isoMLRs). For in vivo studies, the adjuvant-NPs were combined with stabilized spike protein or spike-conjugated NPs and assessed using a two-dose intranasal or intramuscular vaccination model in mice. Combination adjuvant-NPs simultaneously targeting TLR and RIG-I receptors (MPLA+PUUC, CpG+PUUC, and R848+PUUC) differentially induced T cell proliferation and increased proinflammatory cytokine secretion by APCs in vitro. When delivered intranasally, MPLA+PUUC NPs enhanced CD4+CD44+ activated memory T cell responses against spike protein in the lungs while MPLA NPs increased anti-spike IgA in the bronchoalveolar (BAL) fluid and IgG in the blood. Following intramuscular delivery, PUUC NPs induced strong humoral immune responses, characterized by increases in anti-spike IgG in the blood and germinal center B cell populations (GL7+ and BCL6+ B cells) in the draining lymph nodes (dLNs). MPLA+PUUC NPs further boosted spike protein-neutralizing antibody titers and T follicular helper cell populations in the dLNs. These results suggest that protein subunit vaccines with particle-delivered molecular adjuvants targeting TLR4 and RIG-I could lead to robust and unique route-specific adaptive immune responses against SARS-CoV-2.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Proteína DEAD-box 58 , Nanopartículas , Receptores Imunológicos , Receptor 4 Toll-Like , Adjuvantes Imunológicos , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/prevenção & controle , Vacinas contra COVID-19/imunologia , Sistemas de Liberação de Medicamentos , Imunidade Humoral , Imunoglobulina G , Camundongos , Nanopartículas/química , Receptores Imunológicos/agonistas , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Receptor 4 Toll-Like/agonistas
5.
bioRxiv ; 2022 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-35132413

RESUMO

Despite recent success in vaccinating populations against SARS-CoV-2, concerns about immunity duration, continued efficacy against emerging variants, protection from infection and transmission, and worldwide vaccine availability, remain. Although mRNA, pDNA, and viral-vector based vaccines are being administered, no protein subunit-based SARS-CoV-2 vaccine is approved. Molecular adjuvants targeting pathogen-recognition receptors (PRRs) on antigen-presenting cells (APCs) could improve and broaden the efficacy and durability of vaccine responses. Native SARS-CoV-2 infection stimulate various PRRs, including toll-like receptors (TLRs) and retinoic-acid-inducible gene I-like receptors (RIG-I). We hypothesized that targeting the same PRRs using adjuvants on nanoparticles along with a stabilized spike (S) protein antigen could provide broad and efficient immune responses. Formulations targeting TLR4 (MPLA), TLR7/8 (R848), TLR9 (CpG), and RIG-I (PUUC) delivered on degradable polymer-nanoparticles (NPs) were combined with the S1 subunit of S protein and assessed in vitro with isogeneic mixed lymphocyte reactions (iso-MLRs). For in vivo studies, the adjuvanted nanoparticles were combined with stabilized S protein and assessed using intranasal and intramuscular prime-boost vaccination models in mice. Combination NP-adjuvants targeting both TLR and RIG-I (MPLA+PUUC, CpG+PUUC, or R848+PUUC) differentially increased proinflammatory cytokine secretion (IL-1ß, IL-12p70, IL-27, IFN-ß) by APCs cultured in vitro, and induced differential T cell proliferation. When delivered intranasally, MPLA+PUUC NPs enhanced local CD4+CD44+ activated memory T cell responses while MPLA NPs increased anti-S-protein-specific IgG and IgA in the lung. Following intramuscular delivery, PUUC-carrying NPs induced strong humoral immune responses, characterized by increases in anti-S-protein IgG and neutralizing antibody titers and germinal center B cell populations (GL7+ and BCL6+ B cells). MPLA+PUUC NPs further boosted S-protein-neutralizing antibody titers and T follicular helper cell populations in draining lymph nodes. These results suggest that SARS-CoV-2-mimicking adjuvants and subunit vaccines could lead to robust and unique route-specific adaptive immune responses and may provide additional tools against the pandemic.

6.
Inorg Chem ; 60(16): 12085-12099, 2021 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-34293860

RESUMO

Understanding the comparative oxidative abilities of high-valent metal-oxo/hydroxo/hydroperoxo species holds the key to robust biomimic catalysts that perform desired organic transformations with very high selectivity and efficiency. The comparative oxidative abilities of popular high-valent iron-oxo and manganese-oxo species are often counterintuitive, for example, oxygen atom transfer (OAT) reaction by [(Me2EBC)MnIV-OOH]3+, [(Me2EBC)MnIV-OH]3+, and [(Me2EBC)MnIV═O]2+ (Me2EBC = 4,11-dimethyl-1,4,8,11-tetraazabicyclo[6.6.2]hexadecane) shows extremely high reactivity for MnIV-OOH species and no reactivity for MnIV-OH and MnIV═O species toward alkyl/aromatic sulfides. Using a combination of density functional theory (DFT) and ab initio domain-based local pair natural orbital coupled-cluster with single, double, and perturbative triples excitation (DLPNO-CCSD(T)) and complete-active space self-consistent field/N-electron valence perturbation theory second order (CASSCF/NEVPT2) calculations, here, we have explored the electronic structures and sulfoxidation mechanism of these species. Our calculations unveil that MnIV-OOH reacts through distal oxygen atom with the substrate via electron transfer (ET) mechanism with a very small kinetic barrier (16.5 kJ/mol), placing this species at the top among the best-known catalysts for such transformations. The MnIV-OH and MnIV═O species have a much larger barrier. The mechanism has also been found to switch from ET in the former to concerted in the latter, rendering both unreactive under the tested experimental conditions. Intrinsic differences in the electronic structures, such as the presence and absence of the multiconfigurational character coupled with the steric effects, are responsible for such variations observed. This comparative oxidative ability that runs contrary to the popular iron-oxo/hydroperoxo reactivity will have larger mechanistic implications in understanding the reactivity of biomimic catalysts and the underlying mechanisms in PSII.

7.
Biomater Sci ; 8(22): 6322-6336, 2020 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-33025968

RESUMO

Receptors of carbohydrate mannose-6-phosphate (M6P) are overexpressed in specific cancer cells (such as breast cancer) and are also involved in the trafficking of mannose-6-phosphate labeled proteins exclusively onto lysosomes via cell surface M6P receptor (CI-MPR) mediated endocytosis. Herein, for the first time, mannose-6-phosphate glycopolypeptide (M6PGP)-based bioactive and stimuli-responsive nanocarriers are reported. They are selectively taken up via receptor-mediated endocytosis, and trafficked to lysosomes where they are subsequently degraded by pH or enzymes, leading to the release of the cargo inside the lysosomes. Two different amphiphilic M6P block copolymers M6PGP15-APPO44 and M6PGP15-(PCL25)2 were synthesized by click reaction of the alkyne end-functionalized M6PGP15 with pH-responsive biocompatible azide end-functionalized acetal PPO and azide end-functionalized branched PCL, respectively. In water, the amphiphilic M6P-glycopolypeptide block copolymers self-assembled into micellar nanostructures, as was evidenced by DLS, TEM, AFM, and fluorescence spectroscopy techniques. These micellar systems were competent to encapsulate the hydrophobic dye rhodamine-B-octadecyl ester, which was used as the model drug. They were stable at physiological pH but were found to disassemble at acidic pH (for M6PGP15-APPO44) or in the presence of esterase (for M6PGP15-(PCL25)2). These M6PGP based micellar nanoparticles can selectively target lysosomes in cancerous cells such as MCF-7 and MDA-MB-231. Finally, we demonstrate the clathrin-mediated endocytic pathway of the native FL-M6PGP polymer and RBOE loaded M6PGP micellar-nanocarriers, and selective trafficking of MCF-7 and MDA-MB-231 breast cancer cell lysosomes, demonstrating their potential applicability toward receptor-mediated lysosomal cargo delivery.


Assuntos
Manosefosfatos , Nanopartículas , Endocitose , Humanos , Lisossomos
8.
Dalton Trans ; 49(30): 10380-10393, 2020 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-32613212

RESUMO

Oxygen atom transfer (OAT) reactions employing transition metal-oxo species have tremendous significance in homogeneous catalysis for industrial use. Understanding the structural and mechanistic aspects of OAT reactions using high-valent metal-oxo species is of great importance to fine-tune their reactivity. Herein we examine the reactivity of a non-heme high-valent oxo-manganese(iv) complex, [MnIVH3buea(O)]- towards a variety of substrates such as PPh2Me, PPhMe2, PCy3, PPh3, and PMe3 using density functional theory as well as ab initio CASSCF/NEVPT2 methods. We have initially explored the structure and bonding of [MnIVH3buea(O)]- and its congener [MnIVH3buea(S)]-. Our calculations affirm an S = 3/2 ground state of the catalyst with the S = 5/2 and S = 1/2 excited states predicted to be too high lying in energy to participate in the reaction mechanism. Our ab initio CASSCF/NEVPT2 calculations, however, reveal a strong multi-reference character for the ground S = 3/2 state with many low-lying quartets mixing significantly with the ground state. This opens up various reaction channels, and the admixed wave-function evolves during the reaction with the excited triplet dominating the ground state wave-function at the reactant complex. Our calculations predict the following pattern of reactivity, PCy3 < PMe3 < PPh3 < PPhMe2 < PPh2Me for the OAT reaction with the MnIV[double bond, length as m-dash]O species which correlates well with the experimental observations. Detailed electronic structure analysis of the transitions states reveal that these substrates react via an unusual low-energy δ-type pathway where a spin-up electron from the substrate is transferred to the δ*x2-y2 orbital of the MnIV[double bond, length as m-dash]O facilitated by its multi-reference character. The unusual reactivity observed here has implications in understanding the reactivity of [Mn4Ca] species in photosystem II.


Assuntos
Complexos de Coordenação/química , Teoria da Densidade Funcional , Manganês/química , Oxigênio/química
9.
Front Immunol ; 11: 559382, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33767689

RESUMO

Eliciting durable and protective T cell-mediated immunity in the respiratory mucosa remains a significant challenge. Polylactic-co-glycolic acid (PLGA)-based cationic pathogen-like particles (PLPs) loaded with TLR agonists mimic biophysical properties of microbes and hence, simulate pathogen-pattern recognition receptor interactions to safely and effectively stimulate innate immune responses. We generated micro particle PLPs loaded with TLR4 (glucopyranosyl lipid adjuvant, GLA) or TLR9 (CpG) agonists, and formulated them with and without a mucosal delivery enhancing carbomer-based nanoemulsion adjuvant (ADJ). These adjuvants delivered intranasally to mice elicited high numbers of influenza nucleoprotein (NP)-specific CD8+ and CD4+ effector and tissue-resident memory T cells (TRMs) in lungs and airways. PLPs delivering TLR4 versus TLR9 agonists drove phenotypically and functionally distinct populations of effector and memory T cells. While PLPs loaded with CpG or GLA provided immunity, combining the adjuvanticity of PLP-GLA and ADJ markedly enhanced the development of airway and lung TRMs and CD4 and CD8 T cell-dependent immunity to influenza virus. Further, balanced CD8 (Tc1/Tc17) and CD4 (Th1/Th17) recall responses were linked to effective influenza virus control. These studies provide mechanistic insights into vaccine-induced pulmonary T cell immunity and pave the way for the development of a universal influenza and SARS-CoV-2 vaccines.


Assuntos
Adjuvantes Imunológicos/farmacologia , Imunidade Celular/imunologia , Vírus da Influenza A/imunologia , Linfócitos Intraepiteliais/imunologia , Animais , Linhagem Celular , Cães , Imunidade Inata/imunologia , Memória Imunológica/imunologia , Pulmão/imunologia , Pulmão/virologia , Células Madin Darby de Rim Canino , Camundongos , Camundongos Endogâmicos C57BL , Infecções por Orthomyxoviridae/imunologia , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/imunologia , Receptor 4 Toll-Like/imunologia
10.
Chem Sci ; 10(16): 4402-4411, 2019 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-31057767

RESUMO

Germaacid chloride, germaester, and N-germaacyl pyrrole compounds were not known previously. Therefore, donor-acceptor-stabilised germaacid chloride (i-Bu)2ATIGe(O)(Cl) → B(C6F5)3 (1), germaester (i-Bu)2ATIGe(O)(OSiPh3) → B(C6F5)3 (2), and N-germaacyl pyrrole (i-Bu)2ATIGe(O)(NC4H4) → B(C6F5)3 (3) compounds, with Cl-Ge[double bond, length as m-dash]O, Ph3SiO-Ge[double bond, length as m-dash]O, and C4H4N-Ge[double bond, length as m-dash]O moieties, respectively, are reported here. Germaacid chloride 1 reacts with PhCCLi, KOt-Bu, and RLi (R = Ph, Me) to afford donor-acceptor-stabilised germaynone (i-Bu)2ATIGe(O)(CCPh) → B(C6F5)3 (4), germaester (i-Bu)2ATIGe(O)(Ot-Bu) → B(C6F5)3 (5), and germanone (i-Bu)2ATIGe(O)(R) → B(C6F5)3 (R = Ph 6, Me 7) compounds, respectively. Interconversion between a germaester and a germaacid chloride is achieved; reaction of germaesters 2 and 5 with TMSCl gave germaacid chloride 1, and 1 reacted with Ph3SiOLi and KOt-Bu to produce germaesters 2 and 5. Reaction of N-germaacyl pyrrole 3 with thiophenol produced a donor-acceptor-stabilised germaacyl thioester (i-Bu)2ATIGe(O)(SPh) → B(C6F5)3 (10). Furthermore, the attempted syntheses of germaamides and germacarboxylic acids are also discussed.

11.
ACS Appl Bio Mater ; 2(10): 4162-4172, 2019 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-35021431

RESUMO

pH-responsive "supra-amphiphiles" based on double hydrophilic, positively charged block copolypeptides such as PEG-b-poly-l-lysine together with low molecular weight stimuli-sensitive partners that contain phosphate and carboxylate groups have been widely studied. In contrast, the other widely used cationic polypeptide poly-l-arginine whose cell-penetrating properties are well-known has been much less explored for the synthesis of supra-amphiphile-based nanomaterials. It is also known that the guanidine side chain of arginine binds to carboxylate anions with binding constants that are 2.5 times higher than the corresponding amines of poly-l-lysine. Here, we demonstrate the fabrication of pH-sensitive supra-amphiphilic nanoparticles by simple mixing of PEG2k-b-poly(homoarginine) block copolymer and carboxylic acid containing functional low molecular weight organic compounds. A high yielding three-step methodology was developed for the synthesis of ε-N,N'-di-Boc-l-homoarginine-α-N-carboxyanhydride which was polymerized using amine-terminated PEG (2000 MW) to yield 100% guanine-functionalized polypeptide (PEG2k-b-PHR30) with controlled molecular weights and low PDIs. Incubation of PEG2k-b-PHR30 with four different carboxylic acids (including dexamethasone a glucocorticoid receptor used in cancer therapy) in water leads to the formation of "supra-amphiphilic" nanoparticles (<200 nm size) due to the charge neutralization resulting from the strong interaction between the guanidine group and the carboxylate group. All these nanoparticles were able to encapsulate the hydrophobic dye Nile red with varying efficiency. Although these assemblies were stable at neutral pH, upon lowering the pH of the solution between 4 and 5, the protonation of the carboxylic acids leads to disassembly of these nanoparticles. The cytotoxicity of all four "supra-amphiphilic" nanoparticles varied depending on the carboxylic acid used for their fabrication. While the nanoparticle formed using dioctylbenzoic acid displayed 80% cell viability at concentration of 60 µg/mL, those formed with the steroid deoxycholic acid or dexamethasone showed only 40% cell viability at similar concentrations. Colocalization studies performed using epifluorescence microscopy demonstrate the successful uptake of intact dye-encapsulated nanoparticle inside the cell.

12.
Bioconjug Chem ; 30(3): 633-646, 2019 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-30592602

RESUMO

Glycopolypeptide-based nanocarriers are an attractive class of drug delivery vehicles because of the involvement of carbohydrates in the receptor-mediated endocytosis process. To enhance their efficacy toward controlled and programmable drug delivery, we have prepared stable glycopolypeptide-based bioactive dual-stimuli-responsive (redox and enzyme) micelles for delivery of anticancer drugs specifically to the cancer cells. The amphiphilic biocompatible miktoarm star copolymer, which comprises two hydrophobic poly(ε-caprolactone) blocks, a short poly(propargyl glycine) middle block, and a hydrophilic galactose glycopolypeptide block, was designed and synthesized. The star copolymer is initially self-assembled into un-cross-linked (UCL) micelles, and free alkyne groups at the core-shell interface of the UCL micelles, which were cross-linked by bis(azidoethyl) disulfide (BADS) via click chemistry to form interface cross-linked (ICL) micelles. ICL micelles were found to be stable against dilution. BADS imparted redox-responsive properties to the micelles, while PCL rendered them enzyme-degradable. Dual-stimuli-responsive release behavior with Dox as model drug was studied individually as well as synergistically by applying two stimuli in different sequences. The galactose-containing UCL and ICL micelles were shown to be nontoxic. Intracellular Dox release from UCL and ICL micelles was demonstrated in liver cancer cells (HepG2) by time-dependent cellular uptake studies, and controlled release from ICL micelles compared to UCL micelles was observed. The present report opens a new approach toward targeted and programmable drug delivery in tumor tissues via a specifically targeted (receptor-mediated), dual-responsive, and stable cross-linked nanocarrier system.


Assuntos
Antibióticos Antineoplásicos/administração & dosagem , Preparações de Ação Retardada/química , Doxorrubicina/administração & dosagem , Glicopeptídeos/química , Poliésteres/química , Alcinos/química , Antibióticos Antineoplásicos/farmacologia , Reagentes de Ligações Cruzadas/química , Doxorrubicina/farmacologia , Glicina/análogos & derivados , Glicina/química , Células Hep G2 , Humanos , Micelas , Nanopartículas/química , Neoplasias/tratamento farmacológico , Oxirredução
13.
Angew Chem Int Ed Engl ; 57(45): 14883-14887, 2018 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-30204293

RESUMO

The formation and detailed spectroscopic characterization of the first biuret-containing monoanionic superoxido-NiII intermediate [LNiO2 ]- as the Li salt [2; L=MeN[C(=O)NAr)2 ; Ar=2,6-iPr2 C6 H3 )] is reported. It results from oxidation of the corresponding [Li(thf)3 ]2 [LNiII Br2 ] complex M with excess H2 O2 in the presence of Et3 N. The [LNiO2 ]- core of 2 shows an unprecedented nucleophilic reactivity in the oxidative deformylation of aldehydes, in stark contrast to the electrophilic character of the previously reported neutral Nacnac-containing superoxido-NiII complex 1, [L'NiO2 ] (L'=CH(CMeNAr)2 ). According to density-functional theory (DFT) calculations, the remarkably different behaviour of 1 versus 2 can be attributed to their different charges and a two-state reactivity, in which a doublet ground state and a nearby spin-polarized doublet excited-state both contribute in 1 but not in 2. The unexpected nucleophilicity of the superoxido-NiII core of 2 suggests that such a reactivity may also play a role in catalytic cycles of Ni-containing oxygenases and oxidases.


Assuntos
Complexos de Coordenação/química , Lítio/química , Níquel/química , Superóxidos/química , Modelos Moleculares , Oxirredução , Oxirredutases/química , Oxigênio/química , Oxigenases/química , Teoria Quântica , Sais/química
14.
ACS Appl Bio Mater ; 1(6): 2082-2093, 2018 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-34996270

RESUMO

Development of biocompatible, biodegradable, and drug-eluting macroporous three-dimensional scaffolds that mimic the extracellular matrix of cells remains an important challenge in tissue engineering. In this endeavor, we report the preparation of self-standing macroporous scaffold composed of the natural biopolymer silk fibroin and mesoporous silica particle using the ice-templating strategy. Using methanol as a physical cross-linker, we were able to make self-standing scaffolds with very high mesoporous silica content (∼75% by weight) and with varying mechanical properties (38 ± 1.0 to 181 ± 5.9 kPa). These macroporous scaffolds have ∼80% porosity with an average pore size of 60 µm. Scaffolds that encapsulated the small molecule doxorubicin (as a model drug) and macromolecule fluorescein isothiocyanate conjugate-bovine serum albumin (FITC-BSA) (as a model protein) were also prepared. We demonstrate that the release behavior of encapsulated molecules like doxorubicin (∼35% release) and FITC-BSA (∼47% release) is largely influenced by their interaction with the mesoporous silica particles and the silk fibroin. The biodegradability property of silk hybrid scaffolds is also determined in the presence of protease enzyme, which demonstrates ∼90% degradation in 21 d. Biological studies on ice-templated hybrid silk scaffolds demonstrate excellent biocompatibility, which indicates that hybrid scaffolds are promising candidate for therapeutically relevant repair and regeneration of soft tissues such as tendon and nascent bone.

15.
Dalton Trans ; 46(35): 11913-11924, 2017 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-28849807

RESUMO

The conceptual framework of electrostatic ligand field modulation based on oblate/prolate type electron density of lanthanide ions is one of the most successful approaches to enhance barrier height in lanthanide-based single-ion magnets. Recently, a tetra coordinated [Er{N(SiMe3)2}s3Cl]·2THF (1) complex with an unfavourable ligand field showed slow relaxation of magnetization in zero field and challenges the concept of electrostatic ligand field modulation. To unravel the magnetic relaxation in this complex, we carried out a detailed theoretical investigation on three Er(iii) complexes belonging to the same family of single-ion magnets. The CASSCF/PT2 + RASSI-SO approach highlights that the concept of electrostatic ligand field modulation based on oblate/prolate type is still valid in these complexes, and the relaxation dynamics observed can be rationalized by accounting for both the symmetry and geometrical distortions around the Er(iii) ion. Using ab initio computed blockade barriers and crystal field analysis, we analysed the key components of the magnetic relaxation. Our study suggests that in these structures, the Er(iii) ion shifted out of the triangular plane formed by the three nitrogen donor atoms and this out-of-plane shift (τ) significantly influences the slow-relaxation of magnetization. In order to gain deeper insights into the nature of metal-ligand bonding, and to predict quantitatively the strength of the axial and equatorial ligand field, ELF, QTAIM, and EDA analysis were carried out in these complexes. Our findings highlight that the molecules possessing large barrier height for magnetic relaxation are due to the combined effect of a favourable ligand field and the symmetry around the Er(iii) ion. To understand the intricate role of both effects, several robust magneto-structural correlations were developed. Besides, the lanthanide-halogen covalency was also found to play a vital role in controlling the magnetic anisotropy and thus the magnetic relaxation. A near linear trend was observed between the calculated barrier height and the increase in the Er-X covalency as we move from -F to -I. This offers a de novo approach to increase barrier height in mononuclear lanthanide based complexes.

16.
Chem Commun (Camb) ; 53(22): 3193-3196, 2017 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-28220156

RESUMO

Comparative oxidative abilities of nonheme FeIV[double bond, length as m-dash]NTs and FeIV[double bond, length as m-dash]O species using DFT has been explored. Our calculations reveal that the FeIV[double bond, length as m-dash]NTs is found to be a stronger oxidant in two electron transfer reactions and react exclusively via π channels while the FeIV[double bond, length as m-dash]O species is found to be a stronger oxidant when the σ-pathway is activated such as in HAT reactions.

17.
ACS Omega ; 1(4): 600-612, 2016 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-31457149

RESUMO

Glycopolypeptide-based self-assembled nano-/microstructures with surface-tethered carbohydrates are excellent mimics of glycoproteins on the cell surface. To expand the broad repertoire of glycopolypeptide-based supramolecular soft structures such as polymersomes formed via self-assembly of amphiphilic polymers, we have developed a new class of polyionic complex vesicles (PICsomes) with glycopolypeptides grafted on the external surface. Oppositely charged hydrophilic block copolymers of glycopolypeptide20-b-poly-l-lysine100 and PEG2k-b-poly-l-glutamate100 [PEG = poly(ethylene glycol)] were synthesized using a combination of ring-opening polymerization of N-carboxyanhydrides and "click" chemistry. Under physiological conditions, the catiomer and aniomer self-assemble to form glycopolypeptide-conjugated PICsomes (GP-PICsomes) of micrometer dimensions. Electron and atomic force microscopy suggests a hollow morphology of the PICsomes, with inner aqueous pool (core) and peripheral PIC (shell) regions. Owing to their relatively large (∼micrometers) size, the hollowness of the supramolecular structure could be established via fluorescence microscopy of single GP-PICsomes, both in solution and under dry conditions, using spatially distributed fluorescent probes. Furthermore, the dynamics of single PICsomes in solution could be imaged in real time, which also allowed us to test for multivalent interactions between PICsomes mediated by a carbohydrate (mannose)-binding protein (lectin, Con-A). The immediate association of several GP-PICsomes in the presence of Con-A and their eventual aggregation to form large insoluble aggregate clusters reveal that upon self-assembly carbohydrate moieties protrude on the outer surface which retains their biochemical activity. Challenge experiments with excess mannose reveal fast deaggregation of GP-PICsomes as opposed to that in the presence of excess galactose, which further establishes the specificity of lectin-mediated polyvalent interactions of the GP-PICsomes.

18.
Dalton Trans ; 42(47): 16518-26, 2013 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-24068118

RESUMO

High-valent metal-oxo complexes have been extensively studied over the years due to their intriguing properties and their abundant catalytic potential. The majority of the catalytic reactions performed by these metal-oxo complexes involves a C-H activation step and extensive efforts over the years have been undertaken to understand the mechanistic aspects of this step. The C-H activation by metal-oxo complexes proceeds via a hydrogen atom transfer reaction and this could happen by multiple pathways, (i) via a proton-transfer followed by an electron transfer (PT-ET), (ii) via an electron-transfer followed by a proton transfer (ET-PT), (iii) via a concerted proton-coupled electron transfer (PCET) mechanism. Identifying the right mechanism is a surging topic in this area and here using [Mn(III)H3buea(O)](2-) (1) and [Mn(IV)H3buea(O)](-) (2) species (where H3buea = tris[(N'-tert-butylureaylato)-N-ethylene]aminato) and its C-H activation reaction with dihydroanthracene (DHA), we have explored the mechanism of hydrogen atom transfer reactions. The experimental kinetic data reported earlier (T. H. Parsell, M.-Y. Yang and A. S. Borovik, J. Am. Chem. Soc., 2009, 131, 2762) suggests that the mechanism between 1 and 2 is drastically different. By computing the transition states, reaction energies and by analyzing the wavefunction of the reactant and transitions states, we authenticate the proposal that the Mn(III)=O undergoes a step wise PT-ET mechanism where as the Mn(IV)=O species undergo a concerted PCET mechanism. Both the species pass through a [Mn(III)-OH] intermediate and the stability of this species hold the key to the difference in the reactivity. The electronic origin for the difference in reactivity is routed back to the strength and basicity of the Mn-oxo bond and the computed results are in excellent agreement with the experimental results.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...