Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Elife ; 92020 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-32067636

RESUMO

The TIR1/AFB auxin co-receptors mediate diverse responses to the plant hormone auxin. The Arabidopsis genome encodes six TIR1/AFB proteins representing three of the four clades that were established prior to angiosperm radiation. To determine the role of these proteins in plant development we performed an extensive genetic analysis involving the generation and characterization of all possible multiply-mutant lines. We find that loss of all six TIR1/AFB proteins results in early embryo defects and eventually seed abortion, and yet a single wild-type allele of TIR1 or AFB2 is sufficient to support growth throughout development. Our analysis reveals extensive functional overlap between even the most distantly related TIR1/AFB genes except for AFB1. Surprisingly, AFB1 has a specialized function in rapid auxin-dependent inhibition of root growth and early phase of root gravitropism. This activity may be related to a difference in subcellular localization compared to the other members of the family.


Assuntos
Proteínas de Arabidopsis/genética , Proteínas F-Box/genética , Receptores de Superfície Celular/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/fisiologia , Proteínas F-Box/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/fisiologia , Receptores de Superfície Celular/fisiologia
2.
Plant Biotechnol J ; 15(8): 1054-1067, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28116829

RESUMO

Phosphate (Pi) deficiency in soil system is a limiting factor for rice growth and yield. Majority of the soil phosphorus (P) is organic in nature, not readily available for root uptake. Low Pi-inducible purple acid phosphatases (PAPs) are hypothesized to enhance the availability of Pi in soil and cellular system. However, information on molecular and physiological roles of rice PAPs is very limited. Here, we demonstrate the role of a novel rice PAP, OsPAP21b in improving plant utilization of organic-P. OsPAP21b was found to be under the transcriptional control of OsPHR2 and strictly regulated by plant Pi status at both transcript and protein levels. Biochemically, OsPAP21b showed hydrolysis of several organophosphates at acidic pH and possessed sufficient thermostability befitting for high-temperature rice ecosystems with acidic soils. Interestingly, OsPAP21b was revealed to be a secretory PAP and encodes a distinguishable major APase (acid phosphatase) isoform under low Pi in roots. Further, OsPAP21b-overexpressing transgenics showed increased biomass, APase activity and P content in both hydroponics supplemented with organic-P sources and soil containing organic manure as sole P source. Additionally, overexpression lines depicted increased root length, biomass and lateral roots under low Pi while RNAi lines showed reduced root length and biomass as compared to WT. In the light of these evidences, present study strongly proposes OsPAP21b as a useful candidate for improving Pi acquisition and utilization in rice.


Assuntos
Fosfatase Ácida/metabolismo , Glicoproteínas/metabolismo , Oryza/enzimologia , Oryza/metabolismo , Fosfatos/metabolismo , Fosfatase Ácida/genética , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Glicoproteínas/genética , Oryza/genética , Fósforo/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/enzimologia , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas/enzimologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Interferência de RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...