Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Med ; 23(4): 483-492, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28263309

RESUMO

Diffuse intrinsic pontine glioma (DIPG) is an aggressive brain tumor that is located in the pons and primarily affects children. Nearly 80% of DIPGs harbor mutations in histone H3 genes, wherein lysine 27 is substituted with methionine (H3K27M). H3K27M has been shown to inhibit polycomb repressive complex 2 (PRC2), a multiprotein complex responsible for the methylation of H3 at lysine 27 (H3K27me), by binding to its catalytic subunit EZH2. Although DIPGs with the H3K27M mutation show global loss of H3K27me3, several genes retain H3K27me3. Here we describe a mouse model of DIPG in which H3K27M potentiates tumorigenesis. Using this model and primary patient-derived DIPG cell lines, we show that H3K27M-expressing tumors require PRC2 for proliferation. Furthermore, we demonstrate that small-molecule EZH2 inhibitors abolish tumor cell growth through a mechanism that is dependent on the induction of the tumor-suppressor protein p16INK4A. Genome-wide enrichment analyses show that the genes that retain H3K27me3 in H3K27M cells are strong polycomb targets. Furthermore, we find a highly significant overlap between genes that retain H3K27me3 in the DIPG mouse model and in human primary DIPGs expressing H3K27M. Taken together, these results show that residual PRC2 activity is required for the proliferation of H3K27M-expressing DIPGs, and that inhibition of EZH2 is a potential therapeutic strategy for the treatment of these tumors.


Assuntos
Neoplasias do Tronco Encefálico/genética , Proliferação de Células/genética , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Glioma/genética , Histonas/genética , Animais , Benzamidas/farmacologia , Compostos de Bifenilo , Neoplasias Encefálicas/genética , Sistemas CRISPR-Cas , Linhagem Celular Tumoral , Imunoprecipitação da Cromatina , Cromatografia Líquida , Inibidor p16 de Quinase Dependente de Ciclina/efeitos dos fármacos , Inibidor p16 de Quinase Dependente de Ciclina/genética , Modelos Animais de Doenças , Proteína Potenciadora do Homólogo 2 de Zeste/antagonistas & inibidores , Técnicas de Inativação de Genes , Glioblastoma/genética , Humanos , Imuno-Histoquímica , Hibridização in Situ Fluorescente , Indazóis/farmacologia , Camundongos , Camundongos SCID , Terapia de Alvo Molecular , Morfolinas , Mutação , Transplante de Neoplasias , Células-Tronco Neurais , Complexo Repressor Polycomb 2/genética , Piridonas/farmacologia , Espectrometria de Massas em Tandem , Proteína Supressora de Tumor p14ARF/efeitos dos fármacos , Proteína Supressora de Tumor p14ARF/genética
2.
Cancer Res ; 73(20): 6323-33, 2013 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-23943798

RESUMO

The Hedgehog (Hh) signaling pathway plays an important role in embryonic patterning and development of many tissues and organs as well as in maintaining and repairing mature tissues in adults. Uncontrolled activation of the Hh-Gli pathway has been implicated in developmental abnormalities as well as in several cancers, including brain tumors like medulloblastoma and glioblastoma. Inhibition of aberrant Hh-Gli signaling has, thus, emerged as an attractive approach for anticancer therapy; however, the mechanisms that mediate Hh-Gli signaling in vertebrates remain poorly understood. Here, we show that the histone acetyltransferase PCAF/KAT2B is an important factor of the Hh pathway. Specifically, we show that PCAF depletion impairs Hh activity and reduces expression of Hh target genes. Consequently, PCAF downregulation in medulloblastoma and glioblastoma cells leads to decreased proliferation and increased apoptosis. In addition, we found that PCAF interacts with GLI1, the downstream effector in the Hh-Gli pathway, and that PCAF or GLI1 loss reduces the levels of H3K9 acetylation on Hh target gene promoters. Finally, we observed that PCAF silencing reduces the tumor-forming potential of neural stem cells in vivo. In summary, our study identified the acetyltransferase PCAF as a positive cofactor of the Hh-Gli signaling pathway, leading us to propose PCAF as a candidate therapeutic target for the treatment of patients with medulloblastoma and glioblastoma.


Assuntos
Glioblastoma/genética , Proteínas Hedgehog/genética , Meduloblastoma/genética , Fatores de Transcrição/genética , Fatores de Transcrição de p300-CBP/genética , Animais , Processos de Crescimento Celular/fisiologia , Linhagem Celular Tumoral , Glioblastoma/enzimologia , Glioblastoma/metabolismo , Glioblastoma/patologia , Proteínas Hedgehog/biossíntese , Proteínas Hedgehog/metabolismo , Humanos , Meduloblastoma/enzimologia , Meduloblastoma/metabolismo , Meduloblastoma/patologia , Camundongos , Células NIH 3T3 , Regiões Promotoras Genéticas , RNA Interferente Pequeno , Transdução de Sinais , Fatores de Transcrição/metabolismo , Transcrição Gênica , Transfecção , Proteína GLI1 em Dedos de Zinco , Fatores de Transcrição de p300-CBP/metabolismo
3.
BioData Min ; 4(1): 15, 2011 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-21672238

RESUMO

BACKGROUND: To make sense out of gene expression profiles, such analyses must be pushed beyond the mere listing of affected genes. For example, if a group of genes persistently display similar changes in expression levels under particular experimental conditions, and the proteins encoded by these genes interact and function in the same cellular compartments, this could be taken as very strong indicators for co-regulated protein complexes. One of the key requirements is having appropriate tools to detect such regulatory patterns. RESULTS: We have analyzed the global adaptations in gene expression patterns in the budding yeast when the Hsp90 molecular chaperone complex is perturbed either pharmacologically or genetically. We integrated these results with publicly accessible expression, protein-protein interaction and intracellular localization data. But most importantly, all experimental conditions were simultaneously and dynamically visualized with an animation. This critically facilitated the detection of patterns of gene expression changes that suggested underlying regulatory networks that a standard analysis by pairwise comparison and clustering could not have revealed. CONCLUSIONS: The results of the animation-assisted detection of changes in gene regulatory patterns make predictions about the potential roles of Hsp90 and its co-chaperone p23 in regulating whole sets of genes. The simultaneous dynamic visualization of microarray experiments, represented in networks built by integrating one's own experimental with publicly accessible data, represents a powerful discovery tool that allows the generation of new interpretations and hypotheses.

4.
J Bacteriol ; 191(4): 1191-9, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19060138

RESUMO

Toxin-antitoxin (TA) loci are common in free-living bacteria and archaea. TA loci encode a stable toxin that is neutralized by a metabolically unstable antitoxin. The antitoxin can be either a protein or an antisense RNA. So far, six different TA gene families, in which the antitoxins are proteins, have been identified. Recently, Makarova et al. (K. S. Makarova, N. V. Grishin, and E. V. Koonin, Bioinformatics 22:2581-2584, 2006) suggested that the hicAB loci constitute a novel TA gene family. Using the hicAB locus of Escherichia coli K-12 as a model system, we present evidence that supports this inference: expression of the small HicA protein (58 amino acids [aa]) induced cleavage in three model mRNAs and tmRNA. Concomitantly, the global rate of translation was severely reduced. Using tmRNA as a substrate, we show that HicA-induced cleavage does not require the target RNA to be translated. Expression of HicB (145 aa) prevented HicA-mediated inhibition of cell growth. These results suggest that HicB neutralizes HicA and therefore functions as an antitoxin. As with other antitoxins (RelB and MazF), HicB could resuscitate cells inhibited by HicA, indicating that ectopic production of HicA induces a bacteriostatic rather than a bactericidal condition. Nutrient starvation induced strong hicAB transcription that depended on Lon protease. Mining of 218 prokaryotic genomes revealed that hicAB loci are abundant in bacteria and archaea.


Assuntos
Archaea/enzimologia , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica/fisiologia , Família Multigênica , Biossíntese de Proteínas , RNA Mensageiro/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...