Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Nanomedicine ; 19: 5397-5418, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38863647

RESUMO

Background: The healing of burn wounds is a complicated physiological process that involves several stages, including haemostasis, inflammation, proliferation, and remodelling to rebuild the skin and subcutaneous tissue integrity. Recent advancements in nanomaterials, especially nanofibers, have opened a new way for efficient healing of wounds due to burning or other injuries. Methods: This study aims to develop and characterize collagen-decorated, bilayered electrospun nanofibrous mats composed of PVP and PVA loaded with Resveratrol (RSV) and Ampicillin (AMP) to accelerate burn wound healing and tissue repair. Results: Nanofibers with smooth surfaces and web-like structures with diameters ranging from 200 to 400 nm were successfully produced by electrospinning. These fibres exhibited excellent in vitro properties, including the ability to absorb wound exudates and undergo biodegradation over a two-week period. Additionally, these nanofibers demonstrated sustained and controlled release of encapsulated Resveratrol (RSV) and Ampicillin (AMP) through in vitro release studies. The zone of inhibition (ZOI) of PVP-PVA-RSV-AMP nanofibers against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) was found 31±0.09 mm and 12±0.03, respectively, which was significantly higher as compared to positive control. Similarly, the biofilm study confirmed the significant reduction in the formation of biofilms in nanofiber-treated group against both S. aureus and E. coli. X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) analysis proved the encapsulation of RSV and AMP successfully into nanofibers and their compatibility. Haemolysis assay (%) showed no significant haemolysis (less than 5%) in nanofiber-treated groups, confirmed their cytocompatibility with red blood cells (RBCs). Cell viability assay and cell adhesion on HaCaT cells showed increased cell proliferation, indicating its biocompatibility as well as non-toxic properties. Results of the in-vivo experiments on a burn wound model demonstrated potential burn wound healing in rats confirmed by H&E-stained images and also improved the collagen synthesis in nanofibers-treated groups evidenced by Masson-trichrome staining. The ELISA assay clearly indicated the efficient downregulation of TNF-alpha and IL-6 inflammatory biomarkers after treatment with nanofibers on day 10. Conclusion: The RSV and AMP-loaded nanofiber mats, developed in this study, expedite burn wound healing through their multifaceted approach.


Assuntos
Ampicilina , Queimaduras , Colágeno , Escherichia coli , Nanofibras , Álcool de Polivinil , Povidona , Resveratrol , Staphylococcus aureus , Cicatrização , Resveratrol/farmacologia , Resveratrol/química , Resveratrol/administração & dosagem , Resveratrol/farmacocinética , Nanofibras/química , Queimaduras/tratamento farmacológico , Cicatrização/efeitos dos fármacos , Animais , Colágeno/química , Povidona/química , Staphylococcus aureus/efeitos dos fármacos , Álcool de Polivinil/química , Humanos , Escherichia coli/efeitos dos fármacos , Ampicilina/farmacologia , Ampicilina/química , Ampicilina/farmacocinética , Ampicilina/administração & dosagem , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/administração & dosagem , Ratos , Biofilmes/efeitos dos fármacos , Masculino
2.
Artigo em Inglês | MEDLINE | ID: mdl-38696091

RESUMO

The current advent explores the potential of itraconazole (ITR) in prostate cancer (PCa), by its incorporation into albumin nanoparticles (NP). ITR as a repurposed moiety has displayed tremendous potential in various cancers. However, poor aqueous solubility poses hurdles towards its clinical translation. Amorphisation of ITR was observed post-incorporation within NP matrix which could prevent its precipitation in aqueous media. ITR NP was developed using quality by design and multivariate analysis and evaluated for cellular uptake, cell proliferation inhibition and the mechanism of PCa cell inhibition. Time and concentration-dependent serum stability and hemolytic potential revealed safety of ITR NP. Morphological changes and nuclear staining studies revealed the efficacy of ITR and ITR NP in promoting growth inhibition of PC-3 cells. Superior qualitative and quantitative uptake, reactive oxygen species (ROS) and mitochondrial impairment for ITR NP in comparison with ITR and control group was observed. Cell cycle study revealed remarkable G2/M phase inhibition in PC-3 cells. ITR NP demonstrated superior anticancer potential in 3D tumoroids mimicking the micro-metastatic lesions compared to control and ITR. Hence, ITR NP can be a favorable alternative therapeutic alternative in PCa.

3.
Life Sci ; 343: 122545, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38458556

RESUMO

Type-1 Diabetes Mellitus (T1DM) manifests due to pancreatic beta cell destruction, causing insulin deficiency and hyperglycaemia. Current therapies are inadequate for brittle diabetics, necessitating pancreatic islet transplants, which however, introduces its own set of challenges such as paucity of donors, rigorous immunosuppression and autoimmune rejection. Organoid technology represents a significant stride in the field of regenerative medicine and bypasses donor-based approaches. Hence this article focuses on strategies enhancing the in vivo engraftment of islet organoids (IOs), namely vascularization, encapsulation, immune evasion, alternative extra-hepatic transplant sites and 3D bioprinting. Hypoxia-induced necrosis and delayed revascularization attenuate organoid viability and functional capacity, alleviated by the integration of diverse cell types e.g., human amniotic epithelial cells (hAECs) and human umbilical vein endothelial cells (HUVECs) to boost vascularization. Encapsulation with biocompatible materials and genetic modifications counters immune damage, while extra-hepatic sites avoid surgical complications and immediate blood-mediated inflammatory reactions (IBMIR). Customizable 3D bioprinting may help augment the viability and functionality of IOs. While the clinical translation of IOs faces hurdles, preliminary results show promise. This article underscores the importance of addressing challenges in IO transplantation to advance their use in treating type 1 diabetes effectively.


Assuntos
Diabetes Mellitus Tipo 1 , Transplante das Ilhotas Pancreáticas , Ilhotas Pancreáticas , Humanos , Transplante das Ilhotas Pancreáticas/métodos , Diabetes Mellitus Tipo 1/cirurgia , Organoides , Células Endoteliais da Veia Umbilical Humana
4.
Colloids Surf B Biointerfaces ; 234: 113732, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38181691

RESUMO

Cabazitaxel has been approved for the treatment of prostate cancer since 2010. However, its poor solubility and permeability pitfalls prevent its accumulation at the target site and promote severe adverse effects. About 90% of prostate cancer (PCa) patients suffer from bone metastasis. This advent reports the development of CBZ-loaded pH-responsive polydopamine nanoparticles (CBZ NP) against metastatic PCa cells. Quality by design (QbD) and multivariate analysis tools were employed for the optimization of CBZ NP. Amorphisation of CBZ along with metastatic microenvironment responsive release was observed thereby imparting spatial release and circumventing solubility pitfalls. CBZ NP retained its cytotoxic potential, with a significant increase in quantitative cellular uptake. Apoptotic markers observed from nuclear staining with elevated reactive oxygen species (ROS) and mitochondrial damage revealed by JC-1 staining demonstrated the efficacy of CBZ NP against PC-3 cells with good serum stability and diminished hemolysis. Cell cycle analysis revealed substantial S and G2/M phase arrest with enhancement in apoptosis was observed. Western blot studies revealed an elevation in caspase-1 and suppression in Bcl-2 indicating enhanced apoptosis compared to the control group. Substantial reduction in the diameter of 3D-Tumoroid and enhanced cell proliferation inhibition indicated the efficacy of CBZ NP in PCa. Thus, we conclude that CBZ NP could be a promising Nanotherapeutic approach for PCa.


Assuntos
Antineoplásicos , Neoplasias da Próstata , Taxoides , Humanos , Masculino , Linhagem Celular Tumoral , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/patologia , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose , Concentração de Íons de Hidrogênio , Microambiente Tumoral
5.
Int J Biol Macromol ; 256(Pt 2): 128452, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38042321

RESUMO

Cancer is a devastating disease that causes a substantial number of deaths worldwide. Current therapeutic interventions for cancer include chemotherapy, radiation therapy, or surgery. These conventional therapeutic approaches are associated with disadvantages such as multidrug resistance, destruction of healthy tissues, and tissue toxicity. Therefore, there is a paradigm shift in cancer management wherein nanomedicine-based novel therapeutic interventions are being explored to overcome the aforementioned disadvantages. Supramolecular self-assembled peptide nanofibers are emerging drug delivery vehicles that have gained much attention in cancer management owing to their biocompatibility, biodegradability, biomimetic property, stimuli-responsiveness, transformability, and inherent therapeutic property. Supramolecules form well-organized structures via non-covalent linkages, the intricate molecular arrangement helps to improve tissue permeation, pharmacokinetic profile and chemical stability of therapeutic agents while enabling targeted delivery and allowing efficient tumor imaging. In this review, we present fundamental aspects of peptide-based self-assembled nanofiber fabrication their applications in monotherapy/combinatorial chemo- and/or immuno-therapy to overcome multi-drug resistance. The role of self-assembled structures in targeted/stimuli-responsive (pH, enzyme and photo-responsive) drug delivery has been discussed along with the case studies. Further, recent advancements in peptide nanofibers in cancer diagnosis, imaging, gene therapy, and immune therapy along with regulatory obstacles towards clinical translation have been deliberated.


Assuntos
Nanofibras , Neoplasias , Humanos , Nanofibras/química , Peptídeos/química , Sistemas de Liberação de Medicamentos/métodos , Neoplasias/tratamento farmacológico , Imunidade Celular
6.
Life Sci ; 331: 122021, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37582468

RESUMO

Cancer is the leading cause of death across the globe, with 19.3 million new cancer cases and 10 million deaths in the year 2020. Conventional treatment modalities have numerous pitfalls, such as off-site cytotoxicity and poor bioavailability. Nanocarriers (NCs) have been explored to deliver various therapeutic moieties such as chemotherapeutic agents and photothermal agents, etc. However, several limitations, such as rapid clearance by the reticuloendothelial system, poor extravasation into the tumor microenvironment, and low systemic half-life are roadblocks to successful clinical translation. To circumvent the pitfalls of currently available treatment modalities, neutrophil membrane (NM)-based nanotherapeutics have emerged as a promising platform for cancer management. Their versatile features such as natural tumor tropism, tumor-specific accumulation, and prevention from rapid clearance owing to their autologous nature make them an effective anticancer NCs. In this manuscript, we have discussed various methods for isolation, coating and characterization of NM. We have discussed the role of NM-coated nanotherapeutics as neoadjuvant and adjuvant in different treatment modalities, such as chemotherapy, photothermal and photodynamic therapies with rationales behind their inclusion. Clinical hurdles faced during the bench-to-bedside translation with possible solutions have been discussed. We believe that in the upcoming years, NM-coated nanotherapeutics will open a new horizon in cancer management.


Assuntos
Nanopartículas , Neoplasias , Humanos , Neutrófilos/patologia , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Sistemas de Liberação de Medicamentos , Microambiente Tumoral
7.
Int J Pharm ; 643: 123278, 2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37516214

RESUMO

Oral drug delivery of microparticles demonstrates shortcomings like aggregation, decreased loading capacity and batch-to-batch variation, which limits its scale-up. Later, porous structures gained attention because of their large surface-to-volume ratio, high loading capacity and ability to carry biomacromolecules, which undergo degradation in GIT. But there are pitfalls like non-uniform particle size distribution, the impact of porogen properties, and harsh chemicals. To circumvent these drawbacks, natural carriers like pollen are explored in drug delivery, which withstands harsh environments. This property helps to subdue the acid-sensitive drug in GIT. It shows uniform particle size distribution within the species. On the other side, they contain phytoconstituents like flavonoids and polysaccharides, which possess various pharmacological applications. Therefore, pollen has the capability as a carrier system and therapeutic agent. This review focuses on pollen's microstructure, composition and utility in cancer management. The extraction strategies, characterisation techniques and chemical structure of sporopollenin exine capsule, its use in the oral delivery of antineoplastic drugs, and emerging cancer treatments like photothermal therapy, immunotherapy and microrobots have been highlighted. We have mentioned a note on the anticancer activity of pollen extract. Further, we have summarised the regulatory perspective, bottlenecks and way forward associated with pollen.


Assuntos
Neoplasias , Pólen , Pólen/química , Biopolímeros/química , Sistemas de Liberação de Medicamentos , Neoplasias/tratamento farmacológico
8.
Int J Pharm ; 638: 122918, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37030638

RESUMO

Electrospun nanofibers scaffolds show promising potential in wound healing applications. This work aims to fabricate nanofibrous wound dressing as a novel approach for a topical drug delivery system. Herein, the electrospinning technique is used to design and fabricate bioabsorbable nanofibrous scaffolds of Polyvinyl alcohol/gelatin/poly (lactic-co-glycolic acid) enriched with thrombin (TMB) as hemostatic agent and vancomycin (VCM) as anti-bacterial agent for a multifunctional platform to control excessive blood loss, inhibit bacterial growth and enhance wound healing. SEM, FTIR, XRD, in vitro drug release, antimicrobial studies, biofilm, cell viability assay, and in vivo study in a rat model were used to assess nanofiber's structural, mechanical, and biological aspects. SEM images confirms the diameter of nanofibers which falls within the range from 150 to 300 nm for all the batches. Excellent swelling index data makes it suitable to absorb wound exudates. In-vitro drug release data shows sustained release behavior of nanofiber. Nanofibers scaffolds showed biomimetic behavior and excellent biocompatibility. Moreover, scaffolds exhibited excellent antimicrobial and biofilm activity against Staphylococcus aureus. Nanofibrous scaffolds showed less bleeding time, rapid blood coagulation, and excellent wound closure in a rat model. ELISA study demonstrated the decreasing level of inflammatory markers, such as TNF-α, IL1ß, and IL-6, making formulation promising for hemostatic wound healing applications. Finally, the study concludes that nanofibrous scaffolds loaded with TMB and VCM have promising potential as a dressing material for hemostatic wound healing applications.


Assuntos
Anti-Infecciosos , Hemostáticos , Nanofibras , Ratos , Animais , Antibacterianos , Gelatina/química , Nanofibras/química , Álcool de Polivinil/química , Hemostáticos/farmacologia , Glicóis , Cicatrização
9.
Int J Pharm ; 634: 122633, 2023 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-36690130

RESUMO

The liquid crystalline phase has attracted tremendous attention from researchers across the globe due to its intriguing properties. In this article, we enumerate the different classes of liquid crystals. Lyotropic liquid crystals (LLCs) exhibit their liquid crystalline nature based on the surrounding solvent media, which opens novel horizons in drug delivery and tissue regeneration. The advantages of LLCs in the said fields and the thermodynamic mechanistic insights responsible for their structural stabilization have been conveyed. Various fabrication and characterization techniques, along with factors influencing the formation of LLCs, have been discussed. Applications in novel therapeutic avenues like bone extracellular matrix, cardiac remodeling, wound management, and implants have been unveiled. Also, regulatory considerations, patent, and clinical portfolios to circumvent the hurdles of clinical translation have been discussed. LLCs could be a promising approach in diverse avenues of tissue regeneration.


Assuntos
Cristais Líquidos , Cristais Líquidos/química , Sistemas de Liberação de Medicamentos/métodos , Termodinâmica , Solventes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...