Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neurol Sci ; 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38797764

RESUMO

BACKGROUND: This study explores the compensatory neural mechanisms associated with congenital deafness through an examination of tactile discrimination abilities using high-resolution functional magnetic resonance imaging (fMRI). OBJECTIVE: To analyze the neural substrates underlying tactile processing in congenitally deaf individuals and compare them with hearing controls. METHODS: Our participant pool included thirty-five congenitally deaf individuals and thirty-five hearing controls. All participants engaged in tactile discrimination tasks involving the identification of common objects by touch. We utilized an analytical suite comprising voxel-based statistics, functional connectivity multivariate/voxel pattern analysis (fc-MVPA), and seed-based connectivity analysis to examine neural activity. RESULTS: Our findings revealed pronounced neural activity in congenitally deaf participants within regions typically associated with auditory processing, including the bilateral superior temporal gyrus, right middle temporal gyrus, and right rolandic operculum. Additionally, unique activation and connectivity patterns were observed in the right insula and bilateral supramarginal gyrus, indicating a strategic reorganization of neural pathways for tactile information processing. Behaviorally, both groups demonstrated high accuracy in the tactile tasks, exceeding 90%. However, the deaf participants outperformed their hearing counterparts in reaction times, showcasing significantly enhanced efficiency in tactile information processing. CONCLUSION: These insights into the brain's adaptability to sensory loss through compensatory neural reorganization highlight the intricate mechanisms by which tactile discrimination is enhanced in the absence of auditory input. Understanding these adaptations can help develop strategies to harness the brain's plasticity to improve sensory processing in individuals with sensory impairments, ultimately enhancing their quality of life through improved tactile perception and sensory integration.

2.
Brain Imaging Behav ; 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38523177

RESUMO

Employing functional magnetic resonance imaging (fMRI) techniques, we conducted a comprehensive analysis of neural responses during sign language, picture, and word processing tasks in a cohort of 35 deaf participants and contrasted these responses with those of 35 hearing counterparts. Our voxel-based analysis unveiled distinct patterns of brain activation during language processing tasks. Deaf individuals exhibited robust bilateral activation in the superior temporal regions during sign language processing, signifying the profound neural adaptations associated with sign comprehension. Similarly, during picture processing, the deaf cohort displayed activation in the right angular, right calcarine, right middle temporal, and left angular gyrus regions, elucidating the neural dynamics engaged in visual processing tasks. Intriguingly, during word processing, the deaf group engaged the right insula and right fusiform gyrus, suggesting compensatory mechanisms at play during linguistic tasks. Notably, the control group failed to manifest additional or distinctive regions in any of the tasks when compared to the deaf cohort, underscoring the unique neural signatures within the deaf population. Multivariate Pattern Analysis (MVPA) of functional connectivity provided a more nuanced perspective on connectivity patterns across tasks. Deaf participants exhibited significant activation in a myriad of brain regions, including bilateral planum temporale (PT), postcentral gyrus, insula, and inferior frontal regions, among others. These findings underscore the intricate neural adaptations in response to auditory deprivation. Seed-based connectivity analysis, utilizing the PT as a seed region, revealed unique connectivity pattern across tasks. These connectivity dynamics provide valuable insights into the neural interplay associated with cross-modal plasticity.

3.
J Neurosci ; 44(13)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38383498

RESUMO

Within the intricate matrices of cognitive neuroscience, auditory deprivation acts as a catalyst, propelling a cascade of neuroanatomical adjustments that have, until now, been suboptimally articulated in extant literature. Addressing this gap, our study harnesses high-resolution 3 T MRI modalities to unveil the multifaceted cortical transformations that emerge in tandem with congenital auditory deficits. We conducted a rigorous cortical surface analysis on a cohort of 90 congenitally deaf individuals, systematically compared with 90 normoacoustic controls. Our sample encompassed both male and female participants, ensuring a gender-inclusive perspective in our analysis. Expected alterations within prototypical auditory domains were evident, but our findings transcended these regions, spotlighting modifications dispersed across a gamut of cortical and subcortical structures, thereby epitomizing the cerebral adaptive dynamics to sensory voids. Crucially, the study's innovative methodology integrated two pivotal variables: the duration of auditory deprivation and the extent of sign language immersion. By intersecting these metrics with structural changes, our analysis unveiled nuanced layers of cortical reconfigurations, elucidating a more granulated understanding of neural plasticity. This intersectional approach bestows a unique advantage, allowing for a discerning exploration into how varying durations of sensory experience and alternative communication modalities modulate the brain's morphological terrain. In encapsulating the synergy of neuroimaging finesse and incisive scientific rigor, this research not only broadens the current understanding of adaptive neural mechanisms but also paves the way for tailored therapeutic strategies, finely attuned to individual auditory histories and communicative repertoires.


Assuntos
Córtex Auditivo , Surdez , Humanos , Masculino , Feminino , Imageamento por Ressonância Magnética , Córtex Auditivo/diagnóstico por imagem , Plasticidade Neuronal
4.
Brain Imaging Behav ; 18(3): 496-509, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38170303

RESUMO

The origin of tinnitus remains a topic of discussion; however, numerous resting-state functional magnetic resonance imaging (rsfMRI) studies interpret it as a disruption in neural functional connectivity. Yet, there's notable inconsistency in the resting-state data across these studies. To shed light on this discrepancy, we conducted a meta-analysis of extant rsfMRI studies, aiming to identify potential regions that consistently signify core abnormalities in individuals with tinnitus. METHODS: A systematic search on MEDLINE/PubMed, Google Scholar, and Scopus databases was performed to identify rsfMRI studies on tinnitus published up to October 2022. Coordinates related to the amplitude of low-frequency fluctuation (ALFF) and regional homogeneity (ReHo) brain maps that showed significant differences between tinnitus patients and controls were extracted. Meta-analysis was performed using the activation likelihood estimation method. Data were included from 17 rsfMRI studies that reported a total of 63 distinct foci in ALFF and 46 foci in ReHo. RESULTS: Our meta-analysis revealed several regions where tinnitus patients demonstrated increased ALFF and ReHO values, both individually and collectively, when compared to control subjects. These regions encompassed the insula, middle temporal gyrus, and inferior frontal gyrus on both sides. Additionally, increased activity was also noted in the cerebellum posterior lobe bilaterally and the right superior frontal gyrus. CONCLUSIONS: This meta-analysis demonstrates a unique pattern of resting-state brain abnormalities involving both the auditory and non-auditory brain regions as neuroimaging markers, which helps understand the neuro-pathophysiological mechanisms of tinnitus.


Assuntos
Mapeamento Encefálico , Encéfalo , Imageamento por Ressonância Magnética , Zumbido , Humanos , Encéfalo/fisiopatologia , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico/métodos , Imageamento por Ressonância Magnética/métodos , Descanso , Zumbido/fisiopatologia , Zumbido/diagnóstico por imagem
5.
J Affect Disord ; 340: 820-827, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37597779

RESUMO

Pediatric Bipolar Disorder (BD) is a serious mental illness that affects children and adolescents, characterized by episodes of mania, depression, and mixed episodes. Recent studies have suggested that abnormalities in the white matter (WM) may be a contributing factor. The neuropathogenesis of BD in children is not well-described, and research in this area is limited. Euthymic phase is a period in which clinical symptoms are present but not severe enough to significantly impact mood and daily behavior. In order to better understand the WM changes associated with BD in children, this study utilized Diffusion Tensor Imaging (DTI), to investigate alterations in WM microstructure. 20 confirmed euthymic BD children (aged 7-16) and 20 typically developing children were included in the study. DTI scans were obtained using a 3 T Magnetom Skyra and were analyzed using tract-based spatial statistics (TBSS) to examine changes in fractional anisotropy (FA), axial diffusivity (AD), radial diffusivity (RD), and mean diffusivity (MD). Results showed that compared to the healthy control group, the euthymic BD group exhibited increased FA, AD, RD, and MD values in several brain regions, including the thalamus, precentral corticospinal tract, and superior longitudinal fasciculus. Conversely, decreased values were observed in the body of the corpus callosum and inferior fronto-occipital fasciculus. These findings suggest that alterations in WM microstructure are a hallmark of pediatric bipolar disorder. These findings provide important insights into the brain changes associated with pediatric bipolar disorder and open the door for new avenues of research.


Assuntos
Transtorno Bipolar , Substância Branca , Adolescente , Criança , Humanos , Transtorno Bipolar/diagnóstico por imagem , Imagem de Tensor de Difusão , Substância Branca/diagnóstico por imagem , Transtorno Ciclotímico , Encéfalo/diagnóstico por imagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...