Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 13(19)2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37836357

RESUMO

The evolution of defects during perovskite film fabrication deteriorates the overall film quality and adversely affects the device efficiency of perovskite solar cells (PSCs). We endeavored to control the formation of defects by applying an additive engineering strategy using FABr, which retards the crystal growth formation of CsPbI2.2Br0.8 perovskite by developing an intermediate phase at the initial stage. Improved crystalline and pinhole-free perovskite film with an optimal concentration of FABr-0.8M% additive was realized through crystallographic and microscopic analysis. Suppressed non-radiative recombination was observed through photoluminescence with an improved lifetime of 125 ns for FABr-0.8M% compared to the control film (83 ns). The champion device efficiency of 17.95% was attained for the FABr-0.8M% PSC, while 15.94% efficiency was achieved in the control PSC under air atmospheric conditions. Furthermore, an impressively high indoor performance of 31.22% was achieved for the FABr-0.8M% PSC under 3200 K (1000 lux) LED as compared to the control (23.15%). With a realistic approach of air processing and controlling the crystallization kinetics in wide-bandgap halide PSCs, this investigation paves the way for implementing additive engineering strategies to reduce defects in halide perovskites, which can further benefit efficiency enhancements in outdoor and indoor applications.

2.
Nanoscale ; 15(8): 3850-3863, 2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36723205

RESUMO

All-inorganic CsPbI2Br (CPIB) perovskite has gained strong attention due to their favorable optoelectronic properties for photovoltaics. However, solution-processed CPIB films suffer from poor morphology due to the rapid crystallization process, which must be resolved for desirable photovoltaic performance. We introduced phenethylammonium iodide (PEAI) as an additive into a perovskite precursor that effectively controls the crystallization kinetics to construct the preferred quality α-CPIB film under ambient conditions. Various photophysical and structural characterization studies were performed to investigate the microstructural, morphological, and optoelectronic properties of the CPIB and PEAI-assisted perovskite films. We found that PEAI plays a vital role in decreasing pinholes, ensuring precise crystal growth, enhancing the crystallinity, improving the uniformity, and tailoring the film morphology by retarding the crystallization process, resulting in an improved device performance. The device based on the optimized PEAI additive (0.8 mg) achieved a respectably high power conversion efficiency (PCE) of 17.40% compared to the CPIB perovskite solar cell (PSC; 15.75%). Moreover, the CPIB + 0.8 mg PEAI PSC retained ∼87.25% of its original PCE, whereas the CPIB device retained ∼66.90% of the initial PCE after aging in a dry box at constant heating (85 °C) over 720 h, which revealed high thermal stability. Furthermore, the indoor photovoltaic performance under light-emitting diode (LED) lighting conditions (3200 K, 1000 lux) was investigated, and the CPIB + 0.8 mg PEAI PSC showed a promising PCE of 26.73% compared to the CPIB device (19.68%). In addition, we developed a switching function by employing the optimized PSC under LED lighting conditions, demonstrating the practical application of constructed indoor PSCs.

3.
Angew Chem Int Ed Engl ; 60(34): 18750-18760, 2021 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-34165235

RESUMO

We demonstrate synthesis of a new low-D hybrid perovskitoid (a perovskite-like hybrid halide structure, yellow crystals, P21/n space group) using zwitterion cysteamine (2-aminoethanethiol) linker, and its remarkable molecular diffusion-controlled crystal-to-crystal transformation to Ruddlesden-Popper phase (Red crystals, Pnma space group). Our stable intermediate perovskitoid distinctly differs from all previous reports by way of a unique staggered arrangement of holes in the puckered 2D configuration with a face-sharing connection between the corrugated-1D double chains. The PL intensity for the yellow phase is 5 orders higher as compared to the red phase and the corresponding average lifetime is also fairly long (143 ns). First principles DFT calculations conform very well with the experimental band gap data. We demonstrate applicability of the new perovskitoid yellow phase as an excellent active layer in a self-powered photodetector and for selective detection of Ni2+ via On-Off-On photoluminescence (PL) based on its composite with few-layer black phosphorous.

4.
ACS Omega ; 5(21): 11915-11922, 2020 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-32548370

RESUMO

The dynamics and control of charge transfer between optoelectronically interesting and size-tunable halide perovskite quantum dots and other juxtaposed functional electronic materials are important issues for the emergent device interest involving such a family of materials in heterostructure configurations. Herein, we have grown bimetallic Au-Ag thin films on glass by pulsed laser deposition at room temperature, which bear nanoparticulate character, and the corresponding optical absorption spectra reveal the expected surface plasmon resonance signature(s). Subsequently, spin-coated CsPbBr3 nanoparticle films onto the bimetallic Au-Ag films exhibit surface-enhanced Raman scattering as well as strong photoluminescence quenching, the latter reflecting highly efficient transfer of photo-generated carriers across the CsPbBr3/Au-Ag interface. Surprisingly, when an ultrathin MgO (insulating) layer of optimum thickness is introduced between the CsPbBr3 and Au-Ag films, the charge transfer is further facilitated with the average lifetime of carriers becoming even shorter. By changing the thickness of the thin MgO layer, the carrier lifetime can in fact be tuned; with the charge transfer getting fully blocked for thick enough MgO layers, as expected. Our study thus throws light on the charge-carrier dynamics in halide perovskites, which is of importance to emergent optoelectronic applications.

5.
ChemSusChem ; 12(16): 3742-3746, 2019 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-31305023

RESUMO

Lead-free hybrid and inorganic perovskites (A2 CuBr4 ; A=CH3 NH3 or Cs, 2 D or3 D) are synthesized by a room-temperature solid-state reaction route and examined as anode materials in Li-ion batteries. A remarkably high reversible capacity of 630 mAh g-1 is realized in the 2 D hybrid perovskite at 100 mA g-1 at the end of 140 cycles. A full cell with this anode is also tested and shows impressive cycling stability. A good reversible capacity of 420 mAh g-1 with excellent stability tested up to 1400 cycles is also obtained for the 3 D perovskites. Pb-free hybrid/inorganic halide perovskites can thus be used as viable anode materials for battery applications.

6.
Angew Chem Int Ed Engl ; 57(26): 7682-7686, 2018 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-29693308

RESUMO

An ordered self-assembly of CsPbBr3 quantum dots (QDs) was generated on the surface of few-layer black phosphorus (FLBP). Strong quenching of the QD fluorescence was observed, and analyzed by time-resolved photoluminescence (TR-PL) studies, DFT calculations, and photoconductivity measurements. Charge transfer by type I band alignment is suggested to be the cause of the observed effects.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...