Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Nature ; 612(7939): 228-231, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36477127

RESUMO

Gamma-ray bursts (GRBs) are flashes of high-energy radiation arising from energetic cosmic explosions. Bursts of long (greater than two seconds) duration are produced by the core-collapse of massive stars1, and those of short (less than two seconds) duration by the merger of compact objects, such as two neutron stars2. A third class of events with hybrid high-energy properties was identified3, but never conclusively linked to a stellar progenitor. The lack of bright supernovae rules out typical core-collapse explosions4-6, but their distance scales prevent sensitive searches for direct signatures of a progenitor system. Only tentative evidence for a kilonova has been presented7,8. Here we report observations of the exceptionally bright GRB 211211A, which classify it as a hybrid event and constrain its distance scale to only 346 megaparsecs. Our measurements indicate that its lower-energy (from ultraviolet to near-infrared) counterpart is powered by a luminous (approximately 1042 erg per second) kilonova possibly formed in the ejecta of a compact object merger.


Assuntos
Astros Celestes
2.
Nature ; 600(7890): 621-624, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34937892

RESUMO

Magnetars are strongly magnetized, isolated neutron stars1-3 with magnetic fields up to around 1015 gauss, luminosities of approximately 1031-1036 ergs per second and rotation periods of about 0.3-12.0 s. Very energetic giant flares from galactic magnetars (peak luminosities of 1044-1047 ergs per second, lasting approximately 0.1 s) have been detected in hard X-rays and soft γ-rays4, and only one has been detected from outside our galaxy5. During such giant flares, quasi-periodic oscillations (QPOs) with low (less than 150 hertz) and high (greater than 500 hertz) frequencies have been observed6-9, but their statistical significance has been questioned10. High-frequency QPOs have been seen only during the tail phase of the flare9. Here we report the observation of two broad QPOs at approximately 2,132 hertz and 4,250 hertz in the main peak of a giant γ-ray flare11 in the direction of the NGC 253 galaxy12-17, disappearing after 3.5 milliseconds. The flare was detected on 15 April 2020 by the Atmosphere-Space Interactions Monitor instrument18,19 aboard the International Space Station, which was the only instrument that recorded the main burst phase (0.8-3.2 milliseconds) in the full energy range (50 × 103 to 40 × 106 electronvolts) without suffering from saturation effects such as deadtime and pile-up. Along with sudden spectral variations, these extremely high-frequency oscillations in the burst peak are a crucial component that will aid our understanding of magnetar giant flares.


Assuntos
Astros Celestes , Atmosfera
3.
Nature ; 455(7212): 506-9, 2008 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-18818652

RESUMO

Magnetars are young neutron stars with very strong magnetic fields of the order of 10(14)-10(15) G. They are detected in our Galaxy either as soft gamma-ray repeaters or anomalous X-ray pulsars. Soft gamma-ray repeaters are a rare type of gamma-ray transient sources that are occasionally detected as bursters in the high-energy sky. No optical counterpart to the gamma-ray flares or the quiescent source has yet been identified. Here we report multi-wavelength observations of a puzzling source, SWIFT J195509+261406. We detected more than 40 flaring episodes in the optical band over a time span of three days, and a faint infrared flare 11 days later, after which the source returned to quiescence. Our radio observations confirm a Galactic nature and establish a lower distance limit of approximately 3.7 kpc. We suggest that SWIFT J195509+261406 could be an isolated magnetar whose bursting activity has been detected at optical wavelengths, and for which the long-term X-ray emission is short-lived. In this case, a new manifestation of magnetar activity has been recorded and we can consider SWIFT J195509+261406 to be a link between the 'persistent' soft gamma-ray repeaters/anomalous X-ray pulsars and dim isolated neutron stars.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...