Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
New Phytol ; 240(1): 382-398, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37532924

RESUMO

Plants interact with arbuscular mycorrhizal fungi (AMF) and in doing so, change transcript levels of many miRNAs and their targets. However, the identity of an Argonaute (AGO) that modulates this interaction remains unknown, including in Nicotiana attenuata. We examined how the silencing of NaAGO1/2/4/7/and 10 by RNAi influenced plant-competitive ability under low-P conditions when they interact with AMF. Furthermore, the roles of seven miRNAs, predicted to regulate signaling and phosphate homeostasis, were evaluated by transient overexpression. Only NaAGO7 silencing by RNAi (irAGO7) significantly reduced the competitive ability under P-limited conditions, without changes in leaf or root development, or juvenile-to-adult phase transitions. In plants growing competitively in the glasshouse, irAGO7 roots were over-colonized with AMF, but they accumulated significantly less phosphate and the expression of their AMF-specific transporters was deregulated. Furthermore, the AMF-induced miRNA levels were inversely regulated with the abundance of their target transcripts. miRNA overexpression consistently decreased plant fitness, with four of seven-tested miRNAs reducing mycorrhization rates, and two increasing mycorrhization rates. Overexpression of Na-miR473 and Na-miRNA-PN59 downregulated targets in GA, ethylene, and fatty acid metabolism pathways. We infer that AGO7 optimizes competitive ability and colonization by regulating miRNA levels and signaling pathways during a plant's interaction with AMF.


Assuntos
MicroRNAs , Micorrizas , Nicotiana/metabolismo , Micorrizas/fisiologia , Raízes de Plantas/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Fosfatos/metabolismo
2.
Plant Direct ; 5(10): e350, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34622121

RESUMO

miR390 is a highly conserved miRNA in plant lineages known to function in growth and development processes, such as lateral root development, and in responses to salt and metal stress. In the ecological model species, Nicotiana attenuata, miR390's biological function remains unknown, which we explore here with a gain-of-function analysis with plants over-expressing (OE-) N. attenuata miR390 (Na-miR390) in glasshouse and natural environments. OEmiR390 plants showed normal developmental processes, including lateral root formation or reproductive output, in plants grown under standard conditions in the glasshouse. OEmiR390 plants did not have dramatically altered interactions with arbuscular mycorrhizal fungi (AMF), Fusarium pathogens, or herbivores. However, Na-miR390 regulated the plant's tolerance of herbivory. Caterpillar feeding elicits the accumulation of a suite of phytohormones, including auxin and jasmonates, which further regulate host-tolerance. The increase in Na-miR390 abundance reduces the accumulation of auxin but does not influence levels of other phytohormones including jasmonates (JA, JA-Ile), salicylic acid (SA), and abscisic acid (ABA). Na-miR390 overexpression reduces reproductive output, quantified as capsule production, when plants are attacked by herbivores. Exogenous auxin treatments of herbivore-attacked plants restored capsule production to wild-type levels. During herbivory, Na-miR390 transcript abundances are increased; its overexpression reduces the abundances of auxin biosynthesizing YUCCA and ARF (mainly ARF4) transcripts during herbivory. Furthermore, the accumulation of auxin-regulated phenolamide secondary metabolites (caffeoylputrescine, dicaffeoylspermidine) is also reduced. In N. attenuata, miR390 functions in modulating tolerance responses of herbivore-attacked plants.

3.
J Hazard Mater ; 404(Pt A): 124155, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33049626

RESUMO

In a previous study, we identified a halotolerant rhizobacterium belonging to the genus Klebsiella (MBE02) that protected peanut seeds from Aspergillus flavus infection. Here, we investigated the mechanisms underlying the effect of MBE02 against A. flavus via untargeted metabolite profiling of peanut seeds treated with MBE02, A. flavus, or MBE02+A. flavus. Thirty-five metabolites were differentially accumulated across the three treatments (compared to the control), and the levels of pipecolic acid (Pip) were reduced upon A. flavus treatment only. We validated the function of Pip against A. flavus using multiple resistant and susceptible peanut cultivars. Pip accumulation was strongly associated with the resistant genotypes that also accumulated several mRNAs of the ALD1-like gene in the Pip biosynthesis pathway. Furthermore, exogenous treatment of a susceptible peanut cultivar with Pip reduced A. flavus infection in the seeds. Our findings indicate that Pip is a key component of peanut resistance to A. flavus.


Assuntos
Arachis , Aspergillus flavus , Aspergillus flavus/genética , Ácidos Pipecólicos , Sementes
4.
Plant Physiol ; 184(2): 1128-1152, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32723807

RESUMO

Argonautes (AGOs) associate with noncoding RNAs to regulate gene expression during development and stress adaptation. Their role in plant immunity against hemibiotrophic fungal infection remains poorly understood. Here, we explore the function of AGOs in the interaction of wild tobacco (Nicotiana attenuata) with a naturally occurring hemibiotrophic pathogen, Fusarium brachygibbosum Among all AGOs, only transcripts of AGO4 were elicited after fungal infection. The disease progressed more rapidly in AGO4-silenced (irAGO4) plants than in wild type, and small RNA (smRNA) profiling revealed that 24-nucleotide smRNA accumulation was severely abrogated in irAGO4 plants. Unique microRNAs (miRNAs: 130 conserved and 208 novel, including 11 canonical miRNA sequence variants known as "isomiRs") were identified in infected plants; silencing of AGO4 strongly changed miRNA accumulation dynamics. Time-course studies revealed that infection increased accumulation of abscisic acid, jasmonates, and salicylic acid in wild type; in irAGO4 plants, infection accumulated lower jasmonate levels and lower transcripts of jasmonic acid (JA) biosynthesis genes. Treating irAGO4 plants with JA, methyl jasmonate, or cis-(+)-12-oxo-phytodienoic acid restored wild-type levels of resistance. Silencing expression of RNA-directed RNA polymerases RdR1 and RdR2 (but not RdR3) and Dicer-like3 (DCL3, but not DCL2 or DCL4) increased susceptibility to F brachygibbosum The relevance of AGO4, RdR1, RdR2, and DCL3 in a natural setting was revealed when plants individually silenced in their expression (and their binary combinations) were planted in a diseased field plot in the Great Basin Desert of Utah. These plants were more susceptible to infection and accumulated lower JA levels than wild type. We infer that AGO4-dependent smRNAs play a central role in modulating JA biogenesis and signaling during hemibiotrophic fungal infections.


Assuntos
Proteínas Argonautas/metabolismo , Ciclopentanos/metabolismo , Resistência à Doença/genética , Resistência à Doença/fisiologia , Nicotiana/genética , Nicotiana/microbiologia , Nicotiana/fisiologia , Oxilipinas/metabolismo , Proteínas Argonautas/genética , Fusarium/patogenicidade , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Sudoeste dos Estados Unidos
5.
Sci Rep ; 9(1): 4054, 2019 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-30858512

RESUMO

A halotolerant rhizobacteria, Klebsiella species (referred to MBE02), was identified that had a growth stimulation effect on peanut. To gain mechanistic insights into how molecular components were reprogrammed during the interaction of MBE02 and peanut roots, we performed deep RNA-sequencing. In total, 1260 genes were differentially expressed: 979 genes were up-regulated, whereas 281 were down-regulated by MBE02 treatment as compared to uninoculated controls. A large component of the differentially regulated genes were related to phytohormone signalling. This included activation of a significant proportion of genes involved in jasmonic acid, ethylene and pathogen-defense signalling, which indicated a role of MBE02 in modulating plant immunity. In vivo and in vitro pathogenesis assays demonstrated that MBE02 treatment indeed provide fitness benefits to peanut against Aspergillus infection under controlled as well as field environment. Further, MBE02 directly reduced the growth of a wide range of fungal pathogens including Aspergillus. We also identified possible molecular components involved in rhizobacteria-mediated plant protection. Our results show the potential of MBE02 as a biocontrol agent in preventing infection against several fungal phytopathogens.


Assuntos
Resistência à Doença/genética , Klebsiella/genética , Micoses/microbiologia , Doenças das Plantas/microbiologia , Arabidopsis/genética , Arabidopsis/microbiologia , Arachis/microbiologia , Ciclopentanos/metabolismo , Etilenos/metabolismo , Fungos/patogenicidade , Regulação Bacteriana da Expressão Gênica/genética , Regulação da Expressão Gênica de Plantas/genética , Micoses/genética , Oxilipinas/metabolismo , Doenças das Plantas/genética , Reguladores de Crescimento de Plantas/genética , Reguladores de Crescimento de Plantas/metabolismo , Raízes de Plantas/microbiologia , RNA-Seq , Transdução de Sinais/genética
6.
Methods Mol Biol ; 1932: 99-107, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30701494

RESUMO

microRNAs (miRNAs) are the central component of an important layer of regulation of gene expression at posttranscriptional level. In plants, miRNAs target the transcripts in a highly complementary sequence-dependent manner. Extensive research is being made to study genome-wide miRNA-mediated regulation of gene expression, which has resulted in the development of many tools for in silico prediction of miRNA targets. Although several tools have been developed for predicting miRNA targets in model plants, genome-wide analysis of miRNA targets is still a challenge for non-model species that lack dedicated tools. Here, we describe an in silico procedure for studying miRNA-mediated interactions in plants, which is based on the fact that canonical miRNA-target sites are highly complementary, the miRNAs negatively regulate the expression of their target genes, and miRNAs may form regulatory networks as one miRNA may target more than one transcript and vice versa to modulate and fine-tune expression of the genome.


Assuntos
MicroRNAs/genética , Plantas/genética , RNA de Plantas/genética , Regulação da Expressão Gênica de Plantas/genética , Genoma de Planta/genética , Análise de Sequência de RNA/métodos
7.
Plant Physiol Biochem ; 136: 143-154, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30684843

RESUMO

Water stress severely reduces the production of wheat. Application of seaweed extracts have started to show promise in protecting plants from environmental stresses as they contain several biostimulants. However, the modes of action of these biostimulants are not clear. Here, we investigated the role of Gracilaria dura (GD), a red alga, in conferring stress tolerance to wheat during drought under glasshouse and agro-ecological conditions by integrating molecular studies with physiological and field investigations. GD-sap application conferred drought tolerance (as the biomass increased by up to 57% and crop yield by 70%), via facilitating physiological changes associated to maintaining higher water content. GD-sap application significantly increased ABA accumulation (2.34 and 1.46 fold at 4 and 6 days of drought, respectively) due to enhanced expression of biosynthesis genes. This followed an activation of ABA response genes and physiological processes including reduced stomatal opening, thus reducing water loss. Moreover, GD-sap application enhanced the expression of stress-protective genes specifically under water stress. Treatment with fluridone, an ABA inhibitor, further support the role of ABA in GD-sap mediated drought tolerance in wheat. The findings of this study provide insights into the functional role of GD-sap in improving drought tolerance and show the potential to commercialize GD-sap as a potent biostimulant for sustainable agriculture in regions prone to drought.


Assuntos
Ácido Abscísico/metabolismo , Gracilaria/metabolismo , Extratos Vegetais/farmacologia , Reguladores de Crescimento de Plantas/metabolismo , Triticum/efeitos dos fármacos , Desidratação , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Homeostase/efeitos dos fármacos , Estômatos de Plantas/efeitos dos fármacos , Transpiração Vegetal/efeitos dos fármacos , Triticum/metabolismo , Triticum/fisiologia
8.
BMC Genomics ; 19(1): 937, 2018 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-30558527

RESUMO

BACKGROUND: Nicotiana attenuata is an ecological model plant whose 2.57 Gb genome has recently been sequenced and assembled and for which miRNAs and their genomic locations have been identified. To understand how this plant's miRNAs are reconfigured during plant-arbuscular mycorrhizal fungal (AMF) interactions and whether hostplant calcium- and calmodulin dependent protein kinase (CCaMK) expression which regulates the AMF interaction also modulates miRNAs levels and regulation, we performed a large-scale miRNA analysis of this plant-AMF interaction. RESULTS: Next generation sequencing of miRNAs in roots of empty vector (EV) N. attenuata plants and an isogenic line silenced in CCaMK expression (irCCaMK) impaired in AMF-interactions grown under competitive conditions with and without AMF inoculum revealed a total of 149 unique miRNAs: 67 conserved and 82 novel ones. The majority of the miRNAs had a length of 21 nucleotides. MiRNA abundances were highly variable ranging from 400 to more than 25,000 reads per million. The miRNA profile of irCCaMK plants impaired in AMF colonization was distinct from fully AMF-functional EV plants grown in the same pot. Six conserved miRNAs were present in all conditions and accumulated differentially depending on treatment and genotype; five (miR6153, miR403a-3p, miR7122a, miR167-5p and miR482d, but not miR399a-3p) showed the highest accumulation in AMF inoculated EV plants compared to inoculated irCCaMK plants. Furthermore, the accumulation patterns of sequence variants of selected conserved miRNAs showed a very distinct pattern related to AMF colonization - one variant of miR473-5p specifically accumulated in AMF-inoculated plants. Also abundances of miR403a-3p, miR171a-3p and one of the sequence variants of miR172a-3p increased in AMF-inoculated EV compared to inoculated irCCaMK plants and to non-inoculated EV plants, while miR399a-3p was most strongly enriched in AMF inoculated irCCaMK plants grown in competition with EV. The analysis of putative targets of selected miRNAs revealed an involvement in P starvation (miR399), phytohormone signaling (Nat-R-PN59, miR172, miR393) and defense (e.g. miR482, miR8667, Nat-R-PN-47). CONCLUSIONS: Our study demonstrates (1) a large-scale reprograming of miRNAs induced by AMF colonization and (2) that the impaired AMF signaling due to CCaMK silencing and the resulting reduced competitive ability of irCCaMK plants play a role in modulating signal-dependent miRNA accumulation.


Assuntos
MicroRNAs/metabolismo , Micorrizas/fisiologia , Nicotiana/genética , Proteínas Quinases Dependentes de Cálcio-Calmodulina/genética , Proteínas Quinases Dependentes de Cálcio-Calmodulina/metabolismo , Genótipo , MicroRNAs/genética , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia , Simbiose , Nicotiana/metabolismo , Nicotiana/microbiologia , Transcriptoma
9.
Front Plant Sci ; 9: 636, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29868089

RESUMO

Spot blotch, caused by the hemibiotropic fungus Bipolaris sorokiniana, is amongst the most damaging diseases of wheat. Still, natural variation in expression of biochemical traits that determine field resistance to spot blotch in wheat remain unaddressed. To understand how genotypic variations relate to metabolite profiles of the components of defense-signaling and the plant performance, as well as to discover novel sources of resistance against spot blotch, we have conducted field studies using 968 wheat genotypes at 5 geographical locations in South-Asia in 2 years. 46 genotypes were identified as resistant. Further, in independent confirmatory trials in subsequent 3 years, over 5 geographical locations, we re-characterized 55 genotypes for their resistance (above 46 along with Yangmai#6, a well characterized resistant genotype, and eight susceptible genotypes). We next determined time-dependent spot blotch-induced metabolite profiles of components of defense-signaling as well as levels of enzymatic components of defense pathway (such as salicylic acid (SA), phenolic acids, and redox components), and derived co-variation patterns with respect to resistance in these 55 genotypes. Spot blotch-induced SA accumulation was negatively correlated to disease progression. Amongst phenolic acids, syringic acid was most strongly inversely correlated to disease progression, indicating a defensive function, which was independently confirmed. Thus, exploring natural variation proved extremely useful in determining traits influencing phenotypic plasticity and adaptation to complex environments. Further, by overcoming environmental heterogeneity, our study identifies germplasm and biochemical traits that are deployable for spot blotch resistance in wheat along South-Asia.

10.
Plant Physiol ; 175(2): 927-946, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28811334

RESUMO

In Nicotiana attenuata, specific RNA-directed RNA polymerase (RdR1) and the Dicer-like (DCL3 and DCL4) proteins are recruited during herbivore attack to mediate the regulation of defense responses. However, the identity and role(s) of Argonautes (AGOs) involved in herbivory remain unknown. Of the 11 AGOs in the N. attenuata genome, we silenced the expression of 10. Plants silenced in NaAGO8 expression grew normally but were highly susceptible to herbivore attack. Larvae of Manduca sexta grew faster when consuming inverted-repeat stable transformants (irAGO8) plants but did not differ from the wild type when consuming plants silenced in AGO1 (a, b, and c), AGO2, AGO4 (a and b), AGO7, or AGO10 expression. irAGO8 plants were significantly compromised in herbivore-induced levels of defense metabolites such as nicotine, phenolamides, and diterpenoid glycosides. Time-course analyses revealed extensively altered microRNA profiles and the reduced accumulation of MYB8 transcripts and of the associated genes of the phenolamide and phenylpropanoid pathways as well as the nicotine biosynthetic pathway. A possible AGO8-modulated microRNA-messenger RNA target network was inferred. Furthermore, comparative analysis of domains revealed the diversity of AGO conformations, particularly in the small RNA-binding pocket, which may influence substrate recognition/binding and functional specificity. We infer that AGO8 plays a central role in the induction of direct defenses by modulating several regulatory nodes in the defense signaling network during herbivore response. Thus, our study identifies the effector AGO of the herbivore-induced small RNA machinery, which in N. attenuata now comprises RdR1, DCL3/4, and AGO8.


Assuntos
Proteínas Argonautas/metabolismo , Manduca/fisiologia , Modelos Estruturais , Nicotiana/genética , Doenças das Plantas/imunologia , Proteínas de Plantas/metabolismo , Sequência de Aminoácidos , Animais , Proteínas Argonautas/genética , Herbivoria , Larva , MicroRNAs/genética , Filogenia , Doenças das Plantas/parasitologia , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Domínios Proteicos , RNA Mensageiro/genética , RNA de Plantas/genética , RNA Polimerase Dependente de RNA/genética , RNA Polimerase Dependente de RNA/metabolismo , Ribonuclease III/genética , Ribonuclease III/metabolismo , Alinhamento de Sequência , Nicotiana/imunologia , Nicotiana/parasitologia
11.
Methods Mol Biol ; 1640: 267-294, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28608350

RESUMO

Comparative sequence analysis is widely used for the reconstruction of phylogeny and for understanding the evolutionary history of gene families. Here, we describe the methodologies to reconstruct the phylogenetic and evolutionary history of a gene family across genomes with a focus on the ARGONAUTE (AGO) family of proteins in plants. The method described here may easily be adapted for studying molecular evolution of a wide variety of gene families. We enlist methods as well as parameters for the collection of molecular data (nucleic acids and peptides), preparation of datasets, and selection of evolutionary models and various methods for the phylogenetic and evolutionary analysis, such as maximum likelihood and Bayesian inference.


Assuntos
Proteínas Argonautas/genética , Evolução Molecular , Filogenia , Proteínas de Plantas/genética , Plantas/genética , Teorema de Bayes , Funções Verossimilhança , Modelos Genéticos , Alinhamento de Sequência/métodos , Software
12.
Biotechnol Biofuels ; 10: 135, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28559926

RESUMO

BACKGROUND: Bipolaris sorokiniana is a filamentous fungus that causes spot blotch disease in cereals like wheat and has severe economic consequences. However, information on the identities and role of the cell wall-degrading enzymes (CWDE) in B. sorokiniana is very limited. Several fungi produce CWDE like glycosyl hydrolases (GHs) that help in host cell invasion. To understand the role of these CWDE in B. sorokiniana, the first step is to identify and annotate all possible genes of the GH families like GH3, GH6, GH7, GH45 and AA9 and then characterize them biochemically. RESULTS: We confirmed and annotated the homologs of GH3, GH6, GH7, GH45 and AA9 enzymes in the B. sorokiniana genome using the sequence and domain features of these families. Quantitative real-time PCR analyses of these homologs revealed that the transcripts of the BsGH7-3 (3rd homolog of the GH 7 family in B. sorokiniana) were most abundant. BsGH7-3, the gene of BsGH7-3, was thus cloned into pPICZαC Pichia pastoris vector and expressed in X33 P. pastoris host to be characterized. BsGH7-3 enzyme showed a temperature optimum of 60 °C and a pHopt of 8.1. BsGH7-3 was identified to be an endoglucanase based on its broad substrate specificity and structural comparisons with other such endoglucanases. BsGH7-3 has a very long half-life and retains 100% activity even in the presence of 4 M NaCl, 4 M KCl and 20% (v/v) ionic liquids. The enzyme activity is stimulated up to fivefold in the presence of Mn+2 and Fe+2 without any deleterious effects on enzyme thermostability. CONCLUSIONS: Here we reanalysed the B. sorokiniana genome and selected one GH7 enzyme for further characterization. The present work demonstrates that BsGH7-3 is an endoglucanase with a long half-life and no loss in activity in the presence of denaturants like salt and ionic liquids, and lays the foundation towards exploring the Bipolaris genome for other cell wall-degrading enzymes.

13.
Proc Natl Acad Sci U S A ; 114(23): 6133-6138, 2017 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-28536194

RESUMO

Nicotine, the signature alkaloid of Nicotiana species responsible for the addictive properties of human tobacco smoking, functions as a defensive neurotoxin against attacking herbivores. However, the evolution of the genetic features that contributed to the assembly of the nicotine biosynthetic pathway remains unknown. We sequenced and assembled genomes of two wild tobaccos, Nicotiana attenuata (2.5 Gb) and Nicotiana obtusifolia (1.5 Gb), two ecological models for investigating adaptive traits in nature. We show that after the Solanaceae whole-genome triplication event, a repertoire of rapidly expanding transposable elements (TEs) bloated these Nicotiana genomes, promoted expression divergences among duplicated genes, and contributed to the evolution of herbivory-induced signaling and defenses, including nicotine biosynthesis. The biosynthetic machinery that allows for nicotine synthesis in the roots evolved from the stepwise duplications of two ancient primary metabolic pathways: the polyamine and nicotinamide adenine dinucleotide (NAD) pathways. In contrast to the duplication of the polyamine pathway that is shared among several solanaceous genera producing polyamine-derived tropane alkaloids, we found that lineage-specific duplications within the NAD pathway and the evolution of root-specific expression of the duplicated Solanaceae-specific ethylene response factor that activates the expression of all nicotine biosynthetic genes resulted in the innovative and efficient production of nicotine in the genus Nicotiana Transcription factor binding motifs derived from TEs may have contributed to the coexpression of nicotine biosynthetic pathway genes and coordinated the metabolic flux. Together, these results provide evidence that TEs and gene duplications facilitated the emergence of a key metabolic innovation relevant to plant fitness.


Assuntos
Nicotiana/genética , Nicotina/biossíntese , Alcaloides/biossíntese , Sequência de Bases , Vias Biossintéticas/genética , Elementos de DNA Transponíveis/genética , Evolução Molecular , Duplicação Gênica/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Nicotina/genética , Nicotina/metabolismo , Proteínas de Plantas/genética , Raízes de Plantas/metabolismo , Regiões Promotoras Genéticas/efeitos dos fármacos , Fatores de Transcrição/metabolismo
14.
Plant J ; 86(1): 35-49, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26932764

RESUMO

Spot blotch disease, caused by Bipolaris sorokiniana, is an important threat to wheat, causing an annual loss of ~17%. Under epidemic conditions, these losses may be 100%, yet the molecular responses of wheat to spot blotch remain almost uncharacterized. Moreover, defense-related phytohormone signaling genes have been poorly characterized in wheat. Here, we have identified 18 central components of salicylic acid (SA), jasmonic acid (JA), ethylene (ET), and enhanced disease susceptibility 1 (EDS1) signaling pathways as well as the genes of the phenylpropanoid pathway in wheat. In time-course experiments, we characterized the reprogramming of expression of these pathways in two contrasting genotypes: Yangmai #6 (resistant to spot blotch) and Sonalika (susceptible to spot blotch). We further evaluated the performance of a population of recombinant inbred lines (RILs) by crossing Yangmai#6 and Sonalika (parents) and subsequent selfing to F10 under field conditions in trials at multiple locations. We characterized the reprogramming of defense-related signaling in these RILs as a consequence of spot blotch attack. During resistance to spot blotch attack, wheat strongly elicits SA signaling (SA biogenesis as well as the NPR1-dependent signaling pathway), along with WRKY33 transcription factor, followed by an enhanced expression of phenylpropanoid pathway genes. These may lead to accumulation of phenolics-based defense metabolites that may render resistance against spot blotch. JA signaling may synergistically contribute to the resistance. Failure to elicit SA (and possibly JA) signaling may lead to susceptibility against spot blotch infection in wheat.


Assuntos
Ascomicetos/fisiologia , Doenças das Plantas/imunologia , Reguladores de Crescimento de Plantas/metabolismo , Imunidade Vegetal , Transdução de Sinais , Triticum/fisiologia , Ascomicetos/citologia , Ciclopentanos/metabolismo , Etilenos/metabolismo , Regulação da Expressão Gênica de Plantas , Endogamia , Anotação de Sequência Molecular , Oxilipinas/metabolismo , Folhas de Planta/genética , Folhas de Planta/imunologia , Folhas de Planta/fisiologia , Ácido Salicílico/metabolismo , Triticum/genética , Triticum/imunologia
15.
Plant Signal Behav ; 10(10): e1069455, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26237574

RESUMO

Argonautes (AGOs) are the effector proteins of the RNA-induced silencing (RISC) complex, formed during the phenomena of small-RNA mediated post-transcriptional gene silencing. AGOs are a large family of proteins; their number varies from a few (4 in Chlamydomonas reinhardtii) to many (18 in Oryza sativa) in plants. Genetics-guided analysis have demonstrated the roles of some of the AGOs during growth and development of plants. Biochemical studies have further revealed differences in functional specificities among AGOs. How the AGO family expanded in different plant species during the course of evolution is starting to emerge. We hypothesized that 4 classes of AGOs evolved after divergence of unicellular green algae when an ancestral AGO underwent duplication events. Evolution of multicellularity may have coincided with the diversification of AGOs. A comparative sequence and structure analysis of the plant AGOs, including those from the mosses and the unicellular algae, show not only conformational differences between those from lower and higher plants, but also functional divergence of important sites.


Assuntos
Proteínas Argonautas/genética , Evolução Molecular , Regulação da Expressão Gênica de Plantas , Inativação Gênica , Genes de Plantas , Proteínas de Plantas/genética , Plantas/genética , Proteínas Argonautas/metabolismo , Evolução Biológica , Briófitas/genética , Briófitas/metabolismo , Chlamydomonas/genética , Chlamydomonas/metabolismo , Oryza/genética , Oryza/metabolismo , Filogenia , Proteínas de Plantas/metabolismo , Plantas/metabolismo
16.
BMC Plant Biol ; 15: 23, 2015 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-25626325

RESUMO

BACKGROUND: Argonaute (AGO) proteins form the core of the RNA-induced silencing complex, a central component of the smRNA machinery. Although reported from several plant species, little is known about their evolution. Moreover, these genes have not yet been cloned from the ecological model plant, Nicotiana attenuata, in which the smRNA machinery is known to mediate important ecological traits. RESULTS: Here, we not only identify 11 AGOs in N. attenuata, we further annotate 133 genes in 17 plant species, previously not annotated in the Phytozome database, to increase the number of plant AGOs to 263 genes from 37 plant species. We report the phylogenetic classification, expansion, and diversification of AGOs in the plant kingdom, which resulted in the following hypothesis about their evolutionary history: an ancestral AGO underwent duplication events after the divergence of unicellular green algae, giving rise to four major classes with subsequent gains/losses during the radiation of higher plants, resulting in the large number of extant AGOs. Class-specific signatures in the RNA-binding and catalytic domains, which may contribute to the functional diversity of plant AGOs, as well as context-dependent changes in sequence and domain architecture that may have consequences for gene function were found. CONCLUSIONS: Together, the results demonstrate that the evolution of AGOs has been a dynamic process producing the signatures of functional diversification in the smRNA pathways of higher plants.


Assuntos
Proteínas Argonautas/genética , Evolução Molecular , Proteínas de Plantas/genética , Plantas/genética , Sequência de Aminoácidos , Proteínas Argonautas/química , Proteínas Argonautas/metabolismo , Dados de Sequência Molecular , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Plantas/química , Plantas/metabolismo , Estrutura Terciária de Proteína , Alinhamento de Sequência , Nicotiana/química , Nicotiana/genética , Nicotiana/metabolismo
17.
BMC Genomics ; 15: 348, 2014 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-24885295

RESUMO

BACKGROUND: Deep-sequencing has enabled the identification of large numbers of miRNAs and siRNAs, making the high-throughput target identification a main limiting factor in defining their function. In plants, several tools have been developed to predict targets, majority of them being trained on Arabidopsis datasets. An extensive and systematic evaluation has not been made for their suitability for predicting targets in species other than Arabidopsis. Nor, these have not been evaluated for their suitability for high-throughput target prediction at genome level. RESULTS: We evaluated the performance of 11 computational tools in identifying genome-wide targets in Arabidopsis and other plants with procedures that optimized score-cutoffs for estimating targets. Targetfinder was most efficient [89% 'precision' (accuracy of prediction), 97% 'recall' (sensitivity)] in predicting 'true-positive' targets in Arabidopsis miRNA-mRNA interactions. In contrast, only 46% of true positive interactions from non-Arabidopsis species were detected, indicating low 'recall' values. Score optimizations increased the 'recall' to only 70% (corresponding 'precision': 65%) for datasets of true miRNA-mRNA interactions in species other than Arabidopsis. Combining the results of Targetfinder and psRNATarget delivers high true positive coverage, whereas the intersection of psRNATarget and Tapirhybrid outputs deliver highly 'precise' predictions. The large number of 'false negative' predictions delivered from non-Arabidopsis datasets by all the available tools indicate the diversity in miRNAs-mRNA interaction features between Arabidopsis and other species. A subset of miRNA-mRNA interactions differed significantly for features in seed regions as well as the total number of matches/mismatches. CONCLUSION: Although, many plant miRNA target prediction tools may be optimized to predict targets with high specificity in Arabidopsis, such optimized thresholds may not be suitable for many targets in non-Arabidopsis species. More importantly, non-conventional features of miRNA-mRNA interaction may exist in plants indicating alternate mode of miRNA target recognition. Incorporation of these divergent features would enable next-generation of algorithms to better identify target interactions.


Assuntos
Arabidopsis/genética , Genoma de Planta , MicroRNAs/metabolismo , Algoritmos , Sequenciamento de Nucleotídeos em Larga Escala , MicroRNAs/química , RNA Mensageiro/química , RNA Mensageiro/metabolismo , Curva ROC , Análise de Sequência de RNA , Termodinâmica
18.
BMC Genomics ; 15: 121, 2014 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-24511998

RESUMO

BACKGROUND: Conceptual parallels exist between bacterial and eukaryotic small-RNA (sRNA) pathways, yet relatively little is known about which protein may recognize and recruit bacterial sRNAs to interact with targets. In eukaryotes, Argonaute (AGO) proteins discharge such functions. The highly conserved bacterial YbeY RNase has structural similarities to the MID domain of AGOs. A limited study had indicated that in Sinorhizobium meliloti the YbeY ortholog regulates the accumulation of sRNAs as well as the target mRNAs, raising the possibility that YbeY may play a previously unrecognized role in bacterial sRNA regulation. RESULTS: We have applied a multipronged approach of loss-of-function studies, genome-wide mRNA and sRNA expression profiling, pathway analysis, target prediction, literature mining and network analysis to unravel YbeY-dependent molecular responses of E. coli exposed to hydroxyurea (HU). Loss of ybeY function, which results in a marked resistance to HU, had global affects on sRNA-mediated gene expression. Of 54 detectable E. coli sRNAs in our microarray analysis, 30 sRNAs showed a differential expression upon HU stress, of which 28 sRNAs displayed a YbeY-dependent change in expression. These included 12 Hfq-dependent and 16 Hfq-independent sRNAs. We successfully identified at least 57 experimentally inferred sRNA-mRNA relationships. Further applying a 'context likelihood of relatedness' algorithm, we reverse engineered the YbeY-dependent Hfq-dependent sRNA-mRNA network as well as YbeY-dependent Hfq-independent sRNA-mRNA network. CONCLUSION: YbeY extensively modulates Hfq-dependent and independent sRNA-mRNA interactions. YbeY-dependent sRNAs have central roles in modulating cellular response to HU stress.


Assuntos
Proteínas de Escherichia coli/genética , Escherichia coli/genética , Fator Proteico 1 do Hospedeiro/genética , Hidroxiureia/farmacologia , Metaloproteínas/genética , RNA Bacteriano/metabolismo , Escherichia coli/efeitos dos fármacos , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Redes Reguladoras de Genes/efeitos dos fármacos , Fator Proteico 1 do Hospedeiro/metabolismo , Metaloproteínas/metabolismo
19.
Phytochemistry ; 91: 81-7, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22954732

RESUMO

The biosynthetic potential of endophytic fungi has gained impetus in recent times owing to the continual discovery of fungal endophytes capable of synthesizing plant compounds. However, the sustained production of the desired plant compounds has not yet been achieved using endophytes. It is thus imperative to investigate the diverse interactions that endophytes have with coexisting endophytes, host plants, insect pests, and other specific herbivores. The precise role of these associations on the endophytic production of host plant compounds is mostly overlooked and open to future discoveries. Here, highlighted are the implications of the poorly investigated links and molecular mechanisms that might trigger similar chemical responses in both plants and endophytes. Elucidating such connections can not only enhance the understanding of evolution of complex defense mechanisms in plants and associated organisms, but also help in the sustained production of plant compounds using endophytes harbored within them.


Assuntos
Endófitos/metabolismo , Fungos/metabolismo , Compostos Orgânicos/metabolismo , Plantas/metabolismo , Animais , Endófitos/química , Compostos Orgânicos/química , Plantas/microbiologia
20.
Nucleic Acids Res ; 39(11): 4691-708, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21325267

RESUMO

The SMc01113/YbeY protein, belonging to the UPF0054 family, is highly conserved in nearly every bacterium. However, the function of these proteins still remains elusive. Our results show that SMc01113/YbeY proteins share structural similarities with the MID domain of the Argonaute (AGO) proteins, and might similarly bind to a small-RNA (sRNA) seed, making a special interaction with the phosphate on the 5'-side of the seed, suggesting they may form a component of the bacterial sRNA pathway. Indeed, eliminating SMc01113/YbeY expression in Sinorhizobium meliloti produces symbiotic and physiological phenotypes strikingly similar to those of the hfq mutant. Hfq, an RNA chaperone, is central to bacterial sRNA-pathway. We evaluated the expression of 13 target genes in the smc01113 and hfq mutants. Further, we predicted the sRNAs that may potentially target these genes, and evaluated the accumulation of nine sRNAs in WT and smc01113 and hfq mutants. Similar to hfq, smc01113 regulates the accumulation of sRNAs as well as the target mRNAs. AGOs are central components of the eukaryotic sRNA machinery and conceptual parallels between the prokaryotic and eukaryotic sRNA pathways have long been drawn. Our study provides the first line of evidence for such conceptual parallels. Furthermore, our investigation gives insights into the sRNA-mediated regulation of stress adaptation in S. meliloti.


Assuntos
Proteínas de Bactérias/fisiologia , Pequeno RNA não Traduzido/metabolismo , Sinorhizobium meliloti/genética , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sítios de Ligação , Sequência Conservada , Regulação Bacteriana da Expressão Gênica , Fator Proteico 1 do Hospedeiro/genética , Fator Proteico 1 do Hospedeiro/fisiologia , Dados de Sequência Molecular , Mutação , Fenótipo , Complexo de Inativação Induzido por RNA/química , Alinhamento de Sequência , Sinorhizobium meliloti/metabolismo , Simbiose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...