Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 27(22)2022 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-36431921

RESUMO

The in vitro diagnostics of cancer are not represented well yet, but the need for early-stage detection is undeniable. In recent decades, surface-enhanced Raman spectroscopy (SERS) has emerged as an efficient, adaptable, and unique technique for the detection of cancer molecules in their early stages. Herein, we demonstrate an opto-plasmonic hybrid structure for sensitive detection of the prostate cancer biomarker sarcosine using silica nanospheres coated silver nano-islands as a facile and efficient SERS active substrate. The SERS active platform has been developed via thin (5-15 nm) deposition of silver islands using a simple and cost-effective Radio Frequency (RF) sputtering technique followed by the synthesis and decoration of silica nanospheres (~500 nm) synthesized via Stober's method. It is anticipated that the coupling of Whispering Gallery Modes and photonic nano-jets in SiO2 nanospheres induce Localized Surface Plasmon Resonance (LSPR) in Ag nano-islands, which is responsible for the SERS enhancement. The as-fabricated SERS active platform shows a linear response in the physiological range (10 nM to 100 µM) and an extremely low limit of detection (LOD) of 1.76 nM with a correlation coefficient of 0.98 and enhancement factor ~2 × 107. The findings suggest that our fabricated SERS platform could be potentially used for the rapid detection of bio-chemical traces with high sensitivity.


Assuntos
Nanopartículas Metálicas , Nanosferas , Neoplasias , Humanos , Masculino , Nanosferas/química , Próstata , Dióxido de Silício/química , Biomarcadores Tumorais , Nanopartículas Metálicas/química
2.
RSC Adv ; 12(3): 1550-1562, 2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-35425157

RESUMO

To address the global challenge of water pollution, membrane-based technologies are being used as a dignified separation technology. However, designing low-cost, reusable, freestanding and flexible membranes for wastewater treatment with tunable pore size, good mechanical strength, and high separation efficiency is still a major challenge. Herein, we report the development of a scalable, reusable, freestanding, flexible and functionalized multiwalled carbon nanotube (FMWCNT) membrane filter with tunable pore size for wastewater treatment, which has attractive attributes such as high separation efficiency (>99% for organic dyes and ∼80% for salts), permeance (∼225 L h-1 m-2 bar-1), tensile strength (∼6 MPa), and reusability of both the membrane as well as contaminants separately. This FMWCNTs membrane filter has been developed by a simple vacuum-assisted filtration technique followed by the synthesis of MWCNTs using a cost-effective spray pyrolysis assisted chemical vapor deposition (CVD) technique and chemical functionalization. This study deals with understanding the rejection, retrieval, and reusability of both the membranes as well as waterborne contaminants separately. The developed membrane filter has potential utility in many applications such as wastewater treatment, food industry, and life sciences due to its robust mechanical and separation performance characteristics.

3.
Nanoscale Res Lett ; 16(1): 85, 2021 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-33987738

RESUMO

Herein, we demonstrate the fabrication of highly capacitive activated carbon (AC) using a bio-waste Kusha grass (Desmostachya bipinnata), by employing a chemical process followed by activation through KOH. The as-synthesized few-layered activated carbon has been confirmed through X-ray powder diffraction, transmission electron microscopy, and Raman spectroscopy techniques. The chemical environment of the as-prepared sample has been accessed through FTIR and UV-visible spectroscopy. The surface area and porosity of the as-synthesized material have been accessed through the Brunauer-Emmett-Teller method. All the electrochemical measurements have been performed through cyclic voltammetry and galvanometric charging/discharging (GCD) method, but primarily, we focus on GCD due to the accuracy of the technique. Moreover, the as-synthesized AC material shows a maximum specific capacitance as 218 F g-1 in the potential window ranging from - 0.35 to + 0.45 V. Also, the AC exhibits an excellent energy density of ~ 19.3 Wh kg-1 and power density of ~ 277.92 W kg-1, respectively, in the same operating potential window. It has also shown very good capacitance retention capability even after 5000th cycles. The fabricated supercapacitor shows a good energy density and power density, respectively, and good retention in capacitance at remarkably higher charging/discharging rates with excellent cycling stability. Henceforth, bio-waste Kusha grass-derived activated carbon (DP-AC) shows good promise and can be applied in supercapacitor applications due to its outstanding electrochemical properties. Herein, we envision that our results illustrate a simple and innovative approach to synthesize a bio-waste Kusha grass-derived activated carbon (DP-AC) as an emerging supercapacitor electrode material and widen its practical application in electrochemical energy storage fields.

4.
Food Chem ; 297: 125005, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31253325

RESUMO

Multiwalled carbon nanotubes molybdenum disulfide 3D nanocomposite (MWCNT-MoS2 NC) was successfully synthesized via eco-friendly hydrothermal method. The microstructural characterization of synthesized nanocomposite was carried out using different spectroscopic and microscopic techniques. Nanocomposite was activated using glutaraldehyde chemistry and used as a platform to immobilize Lens culinaris ß-galactosidase (Lsbgal) which resulted in 93% of immobilization efficiency. Attachment of Lsbgal onto nanocomposite was confirmed by AFM, FE-SEM, FTIR, and CLSM. The nanobiocatalyst showed broadening in operational pH and temperature working range. Remarkable increase in thermal stability was observed as compared to soluble enzyme. Nanobiocatalyst showed outstanding increase in storage stability, retained 92% of residual activity over a period of 8 months. This offers good reusability as it retained ∼50% residual activity up to 21 reuses and exhibited higher rate of lactose hydrolysis in whey. MWCNT-MoS2 NC conjugated to biomolecules can serve as a potential platform for fabrication of lactose biosensor.


Assuntos
Lactose/metabolismo , Lens (Planta)/enzimologia , Nanocompostos/química , Soro do Leite/metabolismo , beta-Galactosidase/metabolismo , Biocatálise , Dissulfetos/química , Estabilidade Enzimática , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Concentração de Íons de Hidrogênio , Molibdênio/química , Nanotubos de Carbono/química , Temperatura , beta-Galactosidase/química
5.
Biosens Bioelectron ; 105: 173-181, 2018 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-29412942

RESUMO

Motivation behind the present work is to fabricate a cost effective and scalable biosensing platform for an easy and reliable detection of cancer biomarker Carcinoembryonic antigen (CEA). Here, we report the sensitive and selective detection of CEA using graphene based bio-sensing platform. Large sized (~ 2.5 × 1.0cm2), uniform, continuous, single and few layers graphene films have been grown on copper (Cu) substrate employing chemical vapor deposition (CVD) technique using hexane as a liquid precursor. Functional group has been created over Graphene/Cu substrate through π-π stacking of 1- pyrenebutanoic acid succinimidyl ester (PBSE). Further, to make the sensor specific to CEA, antibody of CEA (anti-CEA) has been covalently immobilized onto PBSE/Graphene/Cu electrode. Selective and sensitive detection of CEA is achieved by anti-CEA/PBSE/Graphene/Cu electrode through electrochemical impedance spectroscopy (EIS) measurements. Under optimal condition, the fabricated sensor shows linear response in the physiological range 1.0-25.0ngmL-1 (normal value ~ 5.0ngmL-1), revealing sensitivity 563.4Ωng-1mLcm-2 with a correlation coefficient of 0.996 and limit of detection (LOD) 0.23ngmL-1. In this way, one step electrode fabrication with high specific surface area provides a light weight, low cost, reliable and scalable novel biosensing platform for sensitive and selective detection of CEA. We believe that this bioelectrode equipped with specific recognition elements could be utilized for detection of other biomolecules too.


Assuntos
Anticorpos Imobilizados/química , Técnicas Biossensoriais/instrumentação , Antígeno Carcinoembrionário/análise , Grafite/química , Animais , Antígeno Carcinoembrionário/sangue , Bovinos , Espectroscopia Dielétrica/instrumentação , Desenho de Equipamento , Humanos , Imunoensaio/instrumentação , Limite de Detecção , Modelos Moleculares , Reprodutibilidade dos Testes , Soroalbumina Bovina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...