Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Transfus Med ; 32(3): 229-236, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34897852

RESUMO

BACKGROUND: Blood groups form the basis of effective and safe blood transfusion. There are about 43 well-recognised human blood group systems presently known. Blood groups are molecularly determined by the presence of specific antigens on the red blood cells and are genetically determined and inherited following Mendelian principles. The lack of a comprehensive, relevant, manually compiled and genome-ready dataset of red cell antigens limited the widespread application of genomic technologies to characterise and interpret the blood group complement of an individual from genomic datasets. MATERIALS AND METHODS: A range of public datasets was used to systematically annotate the variation compendium for its functionality and allele frequencies across global populations. Details on phenotype or relevant clinical importance were collated from reported literature evidence. RESULTS: We have compiled the Blood Group Associated Genomic Variant Resource (BGvar), a manually curated online resource comprising all known human blood group related allelic variants including a total of 1700 International Society of Blood Transfusion approved alleles and 1706 alleles predicted and curated from literature reports. This repository includes 1682 single nucleotide variations (SNVs), 310 Insertions, Deletions (InDels) and Duplications (Copy Number Variations) and about 1360 combination mutations corresponding to 43 human blood group systems and 2 transcription factors. This compendium also encompasses gene fusion and rearrangement events occurring in human blood group genes. CONCLUSION: To the best of our knowledge, BGvar is a comprehensive and a user-friendly resource with most relevant collation of blood group alleles in humans. BGvar is accessible online at URL: http://clingen.igib.res.in/bgvar/.


Assuntos
Antígenos de Grupos Sanguíneos , Antígenos de Grupos Sanguíneos/genética , Variações do Número de Cópias de DNA , Variação Genética , Genômica , Humanos , Imunogenética
2.
Nucleic Acids Res ; 50(D1): D771-D776, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34643704

RESUMO

Ever since the breakout of COVID-19 disease, ceaseless genomic research to inspect the epidemiology and evolution of the pathogen has been undertaken globally. Large scale viral genome sequencing and analysis have uncovered the functional impact of numerous genetic variants in disease pathogenesis and transmission. Emerging evidence of mutations in spike protein domains escaping antibody neutralization is reported. We have built a database with precise collation of manually curated variants in SARS-CoV-2 from literature with potential escape mechanisms from a range of neutralizing antibodies. This comprehensive repository encompasses a total of 5258 variants accounting for 2068 unique variants tested against 230 antibodies, patient convalescent plasma and vaccine breakthrough events. This resource enables the user to gain access to an extensive annotation of SARS-CoV-2 escape variants which would contribute to exploring and understanding the underlying mechanisms of immune response against the pathogen. The resource is available at http://clingen.igib.res.in/esc/.


Assuntos
COVID-19/terapia , Bases de Dados Factuais , SARS-CoV-2/imunologia , Anticorpos Neutralizantes/imunologia , COVID-19/imunologia , COVID-19/virologia , Epitopos de Linfócito B/imunologia , Epitopos de Linfócito T/imunologia , Variação Genética , Humanos , Evasão da Resposta Imune , Imunização Passiva , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Interface Usuário-Computador , Soroterapia para COVID-19
3.
J Genet Eng Biotechnol ; 19(1): 183, 2021 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-34905135

RESUMO

BACKGROUND: Autoinflammatory disorders are the group of inherited inflammatory disorders caused due to the genetic defect in the genes that regulates innate immune systems. These have been clinically characterized based on the duration and occurrence of unprovoked fever, skin rash, and patient's ancestry. There are several autoinflammatory disorders that are found to be prevalent in a specific population and whose disease genetic epidemiology within the population has been well understood. However, India has a limited number of genetic studies reported for autoinflammatory disorders till date. The whole genome sequencing and analysis of 1029 Indian individuals performed under the IndiGen project persuaded us to perform the genetic epidemiology of the autoinflammatory disorders in India. RESULTS: We have systematically annotated the genetic variants of 56 genes implicated in autoinflammatory disorder. These genetic variants were reclassified into five categories (i.e., pathogenic, likely pathogenic, benign, likely benign, and variant of uncertain significance (VUS)) according to the American College of Medical Genetics and Association of Molecular pathology (ACMG-AMP) guidelines. Our analysis revealed 20 pathogenic and likely pathogenic variants with significant differences in the allele frequency compared with the global population. We also found six causal founder variants in the IndiGen dataset belonging to different ancestry. We have performed haplotype prediction analysis for founder mutations haplotype that reveals the admixture of the South Asian population with other populations. The cumulative carrier frequency of the autoinflammatory disorder in India was found to be 3.5% which is much higher than reported. CONCLUSION: With such frequency in the Indian population, there is a great need for awareness among clinicians as well as the general public regarding the autoinflammatory disorder. To the best of our knowledge, this is the first and most comprehensive population scale genetic epidemiological study being reported from India.

4.
Database (Oxford) ; 20212021 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-34309639

RESUMO

The steady increase in global cancer burden has fuelled the development of several modes of treatment for the disease. In the presence of an actionable mutation, targeted therapies offer a method to selectively attack cancer cells, increasing overall efficacy and reducing harmful side effects. However, different drug molecules are in different stages of development, with new molecules obtaining approvals from regulatory agencies each year. To augment clinical impact, it is important that this information reaches clinicians, patients and researchers swiftly and in a structured, well-annotated manner. To this end, we have developed Mutation-Specific Therapies Resource and Database in Cancer (MUSTARD), a database that is designed to be a centralized resource with diverse information such as cancer subtype, associated mutations, therapy offered and its effect observed, along with links to external resources for a more comprehensive annotation. In its current version, MUSTARD comprises over 2105 unique entries, including associations between 418 unique drug therapies, 189 cancer subtypes and 167 genes curated and annotated from over 862 different publications. To the best of our knowledge, it is the only resource that offers comprehensive information on mutation-specific, gene fusions and overexpressed gene-targeted therapies for cancer. Database URL: http://clingen.igib.res.in/mustard/.


Assuntos
Bases de Dados Factuais , Neoplasias , Humanos , Mutação , Neoplasias/tratamento farmacológico , Neoplasias/genética
5.
Pharmacogenomics ; 22(10): 603-618, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34142560

RESUMO

Aim: Numerous drugs are being widely prescribed for COVID-19 treatment without any direct evidence for the drug safety/efficacy in patients across diverse ethnic populations. Materials & methods: We analyzed whole genomes of 1029 Indian individuals (IndiGen) to understand the extent of drug-gene (pharmacogenetic), drug-drug and drug-drug-gene interactions associated with COVID-19 therapy in the Indian population. Results: We identified 30 clinically significant pharmacogenetic variants and 73 predicted deleterious pharmacogenetic variants. COVID-19-associated pharmacogenes were substantially overlapped with those of metabolic disorder therapeutics. CYP3A4, ABCB1 and ALB are the most shared pharmacogenes. Fifteen COVID-19 therapeutics were predicted as likely drug-drug interaction candidates when used with four CYP inhibitor drugs. Conclusion: Our findings provide actionable insights for future validation studies and improved clinical decisions for COVID-19 therapy in Indians.


Assuntos
Tratamento Farmacológico da COVID-19 , COVID-19/genética , Antivirais/uso terapêutico , Povo Asiático , Interações Medicamentosas/genética , Genoma/genética , Genótipo , Humanos , Índia , Farmacogenética/métodos , Testes Farmacogenômicos/métodos , Variantes Farmacogenômicos/genética , SARS-CoV-2/efeitos dos fármacos
6.
PLoS One ; 16(2): e0247115, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33596239

RESUMO

The rapid emergence of coronavirus disease 2019 (COVID-19) as a global pandemic affecting millions of individuals globally has necessitated sensitive and high-throughput approaches for the diagnosis, surveillance, and determining the genetic epidemiology of SARS-CoV-2. In the present study, we used the COVIDSeq protocol, which involves multiplex-PCR, barcoding, and sequencing of samples for high-throughput detection and deciphering the genetic epidemiology of SARS-CoV-2. We used the approach on 752 clinical samples in duplicates, amounting to a total of 1536 samples which could be sequenced on a single S4 sequencing flow cell on NovaSeq 6000. Our analysis suggests a high concordance between technical duplicates and a high concordance of detection of SARS-CoV-2 between the COVIDSeq as well as RT-PCR approaches. An in-depth analysis revealed a total of six samples in which COVIDSeq detected SARS-CoV-2 in high confidence which were negative in RT-PCR. Additionally, the assay could detect SARS-CoV-2 in 21 samples and 16 samples which were classified inconclusive and pan-sarbeco positive respectively suggesting that COVIDSeq could be used as a confirmatory test. The sequencing approach also enabled insights into the evolution and genetic epidemiology of the SARS-CoV-2 samples. The samples were classified into a total of 3 clades. This study reports two lineages B.1.112 and B.1.99 for the first time in India. This study also revealed 1,143 unique single nucleotide variants and added a total of 73 novel variants identified for the first time. To the best of our knowledge, this is the first report of the COVIDSeq approach for detection and genetic epidemiology of SARS-CoV-2. Our analysis suggests that COVIDSeq could be a potential high sensitivity assay for the detection of SARS-CoV-2, with an additional advantage of enabling the genetic epidemiology of SARS-CoV-2.


Assuntos
COVID-19/epidemiologia , COVID-19/virologia , Sequenciamento de Nucleotídeos em Larga Escala/métodos , SARS-CoV-2/genética , SARS-CoV-2/isolamento & purificação , COVID-19/genética , Genoma Viral/genética , Humanos , Índia/epidemiologia , Epidemiologia Molecular/métodos , Reação em Cadeia da Polimerase Multiplex/métodos , Pandemias , Filogenia , RNA Viral/genética , RNA Viral/isolamento & purificação , Sensibilidade e Especificidade
7.
PLoS One ; 16(1): e0244567, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33439861

RESUMO

The Arab population encompasses over 420 million people characterized by genetic admixture and a consequent rich genetic diversity. A number of genetic diseases have been reported for the first time from the population. Additionally a high prevalence of some genetic diseases including autosomal recessive disorders such as hemoglobinopathies and familial mediterranean fever have been found in the population and across the region. There is a paucity of databases cataloguing genetic variants of clinical relevance from the population. The availability of such a catalog could have implications in precise diagnosis, genetic epidemiology and prevention of disease. To fill in the gap, we have compiled DALIA, a comprehensive compendium of genetic variants reported in literature and implicated in genetic diseases reported from the Arab population. The database aims to act as an effective resource for population-scale and sub-population specific variant analyses, enabling a ready reference aiding clinical interpretation of genetic variants, genetic epidemiology, as well as facilitating rapid screening and a quick reference for evaluating evidence on genetic diseases.


Assuntos
Alelos , Árabes/genética , Bases de Dados Genéticas , Febre Familiar do Mediterrâneo/genética , Frequência do Gene , Predisposição Genética para Doença , Variação Genética , Hemoglobinopatias/genética , Humanos
8.
Nucleic Acids Res ; 49(D1): D1225-D1232, 2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-33095885

RESUMO

With the advent of next-generation sequencing, large-scale initiatives for mining whole genomes and exomes have been employed to better understand global or population-level genetic architecture. India encompasses more than 17% of the world population with extensive genetic diversity, but is under-represented in the global sequencing datasets. This gave us the impetus to perform and analyze the whole genome sequencing of 1029 healthy Indian individuals under the pilot phase of the 'IndiGen' program. We generated a compendium of 55,898,122 single allelic genetic variants from geographically distinct Indian genomes and calculated the allele frequency, allele count, allele number, along with the number of heterozygous or homozygous individuals. In the present study, these variants were systematically annotated using publicly available population databases and can be accessed through a browsable online database named as 'IndiGenomes' http://clingen.igib.res.in/indigen/. The IndiGenomes database will help clinicians and researchers in exploring the genetic component underlying medical conditions. Till date, this is the most comprehensive genetic variant resource for the Indian population and is made freely available for academic utility. The resource has also been accessed extensively by the worldwide community since it's launch.


Assuntos
Bases de Dados Genéticas , Variação Genética , Genoma Humano , Projeto Genoma Humano , Software , Adulto , Exoma , Feminino , Genética Populacional/estatística & dados numéricos , Humanos , Índia , Internet , Masculino , Anotação de Sequência Molecular , Sequenciamento Completo do Genoma
9.
Comput Struct Biotechnol J ; 18: 2347-2356, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32994893

RESUMO

ATP7A is a critical copper transporter involved in Menkes Disease, Occipital horn Syndrome and X-linked distal spinal muscular atrophy type 3 which are X linked genetic disorders. These are rare diseases and their genetic epidemiology of the diseases is unknown. A number of genetic variants in the genes have been reported in published literature as well as databases, however, understanding the pathogenicity of variants and genetic epidemiology requires the data to be compiled in a unified format. To this end, we systematically compiled genetic variants from published literature and datasets. Each of the variants were systematically evaluated for evidences with respect to their pathogenicity and classified as per the American College of Medical Genetics and the Association of Molecular Pathologists (ACMG-AMP) guidelines into Pathogenic, Likely Pathogenic, Benign, Likely Benign and Variants of Uncertain Significance. Additional integrative analysis of population genomic datasets provides insights into the genetic epidemiology of the disease through estimation of carrier frequencies in global populations. To deliver a mechanistic explanation for the pathogenicity of selected variants, we also performed molecular modeling studies. Our modeling studies concluded that the small structural distortions observed in the local structures of the protein may lead to the destabilization of the global structure. To the best of our knowledge, ATP7A Clinical Genetics Resource is one of the most comprehensive compendium of variants in the gene providing clinically relevant annotations in gene.

10.
Sci Rep ; 10(1): 9037, 2020 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-32493955

RESUMO

Wilson disease (WD) is one of the most prevalent genetic diseases with an estimated global carrier frequency of 1 in 90 and a prevalence of 1 in 30,000. The disease owes its genesis to Kinnier Wilson who described the disease, and is caused by accumulation of Copper (Cu) in various organs including the liver, central nervous system, cornea, kidney, joints and cardiac muscle which contribute to the characteristic clinical features of WD. A number of studies have reported genetic variants in the ATP7B gene from diverse ethnic and geographical origins. The recent advent of next-generation sequencing approaches has also enabled the discovery of a large number of novel variants in the gene associated with the disease. Previous attempts have been made to compile the knowledgebase and spectrum of genetic variants from across the multitude of publications, but have been limited by the utility due to the significant differences in approaches used to qualify pathogenicity of variants in each of the publications. The recent formulation of guidelines and algorithms for assessment of the pathogenicity of variants jointly put forward by the American College of Medical Genetics and the Association of Molecular Pathologists (ACMG &) has provided a framework for evidence based and systematic assessment of pathogenicity of variants. In this paper, we describe a comprehensive resource of genetic variants in ATP7B gene manually curated from literature and data resources and systematically annotated using the ACMG & AMP guidelines for assessing pathogenicity. The resource therefore serves as a central point for clinicians and geneticists working on WD and to the best of our knowledge is the most comprehensive and only clinically annotated resource for WD. The resource is available at URL http://clingen.igib.res.in/WilsonGen/. We compiled a total of 3662 genetic variants from publications and databases associated with WD. Of these variants compiled, a total of 1458 were found to be unique entries. This is the largest WD database comprising 656 pathogenic/likely pathogenic variants reported classified according to ACMG & AMP guidelines. We also mapped all the pathogenic variants corresponding to ATP7B protein from literature and other databases. In addition, geographical origin and distribution of ATP7B pathogenic variants reported are also mapped in the database.


Assuntos
ATPases Transportadoras de Cobre/genética , Variação Genética/genética , Degeneração Hepatolenticular/genética , Alelos , Cobre/metabolismo , ATPases Transportadoras de Cobre/metabolismo , Bases de Dados Genéticas , Testes Genéticos/métodos , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Mutação/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...