Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 13267, 2022 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-35918395

RESUMO

The main goal of this research paper is to apply a deep neural network model for time series forecasting of environmental variables. Accurate forecasting of snow cover and NDVI are important issues for the reliable and efficient hydrological models and prediction of the spread of forest. Long Short Term Memory (LSTM) model for the time series forecasting of snow cover, temperature, and normalized difference vegetation index (NDVI) are studied in this research work. Artificial neural networks (ANN) are widely used for forecasting time series due to their adaptive computing nature. LSTM and Recurrent neural networks (RNN) are some of the several architectures provided in a class of ANN. LSTM is a kind of RNN that has the capability of learning long-term dependencies. We followed a coarse-to-fine strategy, providing reviews of various related research materials and supporting it with the LSTM analysis on the dataset of Himachal Pradesh, as gathered. Environmental factors of the Himachal Pradesh region are forecasted using the dataset, consisting of temperature, snow cover, and vegetation index as parameters from the year 2001-2017. Currently, available tools and techniques make the presented system more efficient to quickly assess, adjust, and improve the environment-related factors analysis.


Assuntos
Memória de Longo Prazo , Redes Neurais de Computação , Previsões , Temperatura
2.
Environ Sci Pollut Res Int ; 29(48): 72384-72396, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35142996

RESUMO

The detailed analyses of the water balance components (WBCs) of the catchment help assess the available water resources, especially in the arid climate regions for their sustainable management and development. This paper mainly used the Soil and Water Assessment Tool (SWAT) model to analyze the variation in the WBCs considering the change in the Land Use and Land Cover (LULC) and meteorological variables. For this purpose, the model used the inputs of LULC and meteorological variables between 2001 and 2020 at 5 years and daily time intervals, respectively, from the Chittar river catchment. The developed models were calibrated using SWAT-CUP split-up procedure (pre-calibration and post-calibration). The model was found to be good in calibration and validation, yielding the coefficient of determination (R2) of 0.94 and 0.81, respectively. Furthermore, WBCs of the catchment were estimated for the near future (2021-2030) at the monthly and annual scales. For this endeavor, LULC was forecasted for the years 2021 and 2026 using Cellular Automata (CA)-Artificial Neural Network (ANN), and for the same period, meteorological variables were also forecasted using the smoothing moving average method from the historical data.


Assuntos
Mudança Climática , Rios , Clima , Solo , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...