Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Air Waste Manag Assoc ; 46(9): 861-8, 1996 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-8925388

RESUMO

Assessments of exposure to indoor air pollutants usually employ spatially well-mixed models which assume homogeneous concentrations throughout a building or room. However, practical experience and experimental data indicate that concentrations are not uniform in rooms containing point sources of emissions; concentrations tend to be greater in close proximity to the source than they are further from it. This phenomenon could account for the observation that "personal air" monitors frequently yield higher concentrations than nearby microenvironmental monitors (i.e., the so-called "personal cloud" effect). In this project, we systematically studied the concentrations of a tracer gas at various distances from its emission source in a controlled-environment, room-size chamber under a variety of ventilation conditions. Measured concentrations in the proximity of the source deviated significantly above the predictions of a conventional well-mixed single-compartment mass balance model. The deviation was found to be a function of distance from the source and total room air flow rate. At typical air flow rates, the average concentration at arm's length (approximately 0.4 meters) from the source exceeds the theoretical well-mixed concentration by a ratio of about 2:1. However, this ratio is not constant; the monitored concentration appears to vary randomly from near the theoretical value to several times above it. Concentration data were fitted to a two-compartment model with the source located in a small virtual compartment within the room compartment. These two compartments were linked with a stochastic air transfer rate parameter. The resulting model provides a more realistic simulation of exposure concentrations than does the well-mixed model for assessing exposure to emissions from active sources. Parameter values are presented for using the enhanced model in a variety of typical situations.


Assuntos
Poluição do Ar em Ambientes Fechados/análise , Ar/análise , Exposição Ambiental , Humanos , Modelos Teóricos
2.
J Expo Anal Environ Epidemiol ; 3(4): 407-16, 1993.
Artigo em Inglês | MEDLINE | ID: mdl-8173341

RESUMO

Data on air exchange rates are important inputs to indoor air quality models. Indoor air models, in turn, are incorporated into the structure of total human exposure models. Fragmentary data on residential ventilation rates are available in various governmental reports, journal articles, and contractor reports. Most of the published papers present data on only a few homes to answer very specialized questions, and none of these publications summarize the ventilation rates of a large population of homes across the United States. Brookhaven National Laboratory (BNL) has conducted more than 4000 residential perfluorocarbon tracer (PFT) measurements and brought them together into a large data base from about 100 studies in the United States and elsewhere. This paper analyzes the BNL PFT data base to generate frequency distributions and summary statistics for different regions of the United States, different seasons, and different levels within the homes. The data analyses suggest that residential ventilation rates are similar in the northeastern and northwestern states but higher in the southwestern states. Winter and fall ventilation rates are similar, but the rates are slightly higher in spring, and much higher in summer. Multi-level residences have higher air exchange rates than single-level residences. Although the BNL data are not a representative sample of homes in the United States, these analyses give insight into the range of air exchange rates found in the United States under a great variety of conditions and are intended for use by developers of models of indoor air quality and total human exposure.


Assuntos
Poluição do Ar em Ambientes Fechados/estatística & dados numéricos , Ventilação/estatística & dados numéricos , Poluição do Ar em Ambientes Fechados/análise , Exposição Ambiental/análise , Humanos , Modelos Biológicos , Estações do Ano , Estados Unidos , Ventilação/normas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...