Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 5081, 2022 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-35332182

RESUMO

Fluorescence microscopy is a key method in the life sciences. State of the art -omics methods combine fluorescence microscopy with complex protocols to visualize tens to thousands of features in each of millions of pixels across samples. These -omics methods require precise control of temperature, reagent application, and image acquisition parameters during iterative chemistry and imaging cycles conducted over the course of days or weeks. Automated execution of such methods enables robust and reproducible data generation. However, few commercial solutions exist for temperature controlled, fluidics coupled fluorescence imaging, and implementation of bespoke instrumentation requires specialized engineering expertise. Here we present PySeq2500, an open source Python code base and flow cell design that converts the Illumina HiSeq 2500 instrument, comprising an epifluorescence microscope with integrated fluidics, into an open platform for programmable applications without need for specialized engineering or software development expertise. Customizable PySeq2500 protocols enable experimental designs involving simultaneous 4-channel image acquisition, temperature control, reagent exchange, stable positioning, and sample integrity over extended experiments. To demonstrate accessible automation of complex, multi-day workflows, we use the PySeq2500 system for unattended execution of iterative indirect immunofluorescence imaging (4i). Our automated 4i method uses off-the-shelf antibodies over multiple cycles of staining, imaging, and antibody elution to build highly multiplexed maps of cell types and pathological features in mouse and postmortem human spinal cord sections. Given the widespread availability of HiSeq 2500 platforms and the simplicity of the modifications required to repurpose these systems, PySeq2500 enables non-specialists to develop and implement state of the art fluidics coupled imaging methods in a widely available benchtop system.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Software , Animais , Fezes , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Camundongos , Imagem Óptica , Fluxo de Trabalho
2.
Anal Chem ; 87(21): 11022-9, 2015 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-26439226

RESUMO

While nucleic acid amplification tests have great potential as tools for rapid diagnostics, complicated sample preparation requirements inhibit their use in near-patient diagnostics and low-resource-setting applications. Recent advancements in nucleic acid purification have leveraged pH-modulated charge switching polymers to reduce the number of steps required for sample preparation. The polycation chitosan (pKa 6.4) has been used to efficiently purify DNA by binding nucleic acids in acidic buffers and then eluting them at a pH higher than 8.0. Though it is an improvement over conventional methods, this multistep procedure has not transformed the application of nucleic acid amplification assays. Here we describe a simpler approach using magnetic chitosan microparticles that interact with DNA in a manner that has not been reported before. The microparticles capture DNA at a pH optimal for PCR (8.5) just as efficiently as at low pH. Importantly, the captured DNA is still accessible by polymerase, enabling direct amplification from the microparticles. We demonstrate quantitative PCR from DNA captured on the microparticles, thus eliminating nearly all of the sample preparation steps. We anticipate that this new streamlined method for preparing DNA for amplification will greatly expand the diagnostic applications of nucleic acid amplification tests.


Assuntos
Quitosana/química , DNA/isolamento & purificação , Reação em Cadeia da Polimerase/métodos , Microscopia Eletrônica de Varredura
3.
Colloids Surf B Biointerfaces ; 126: 489-95, 2015 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-25620443

RESUMO

Amplification and detection of nucleic acid sequences within integrated microsystems is routinely conducted using the technique of droplet PCR, wherein the polymerase chain reaction (PCR) is performed in microscale water-in-oil droplets (nanoliter to picoliter volumes). During droplet PCR, interactions at the interface of the droplet tend to dominate. Specifically, adsorption of the polymerase at the droplet interface leads to inefficient amplification. To reduce polymerase adsorption, surfactants such as the silicone-based ABIL EM90 have been commonly used. However, these surfactants have been selected largely through trial and error, and have been only somewhat effective. For example, when using ABIL EM90, 8 times (8 ×) the manufacturer prescribed concentration of polymerase was necessary for amplification. In this report, we use the pendant drop technique to measure adsorption and loss of enzyme at droplet interfaces for various surfactant-oil combinations. Dynamic interfacial tension and surface pressure measurements showed that significant polymerase adsorption occurs when using ABIL EM90. In contrast, much lower polymerase adsorption is observed when using Brij L4, a nonionic surfactant with a C12 tail and an oxyethylene headgroup, which has not yet been reported for droplet PCR. These results correlate strongly with droplet PCR efficiency. Brij L4 enables highly efficient PCR at 2 × polymerase concentration, and still enables effective PCR at 1 × polymerase concentration. Overall, this work introduces a methodology for quantitatively assessing surfactants for use with droplet microreactors, and it demonstrates the practical value of this new approach by identifying a surfactant that can dramatically improve the efficiency of droplet PCR.


Assuntos
Óleo Mineral/química , Reação em Cadeia da Polimerase , Tensoativos/química , Adsorção , Estrutura Molecular , Tamanho da Partícula , Propriedades de Superfície
4.
Biomicrofluidics ; 8(5): 056503, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25538814

RESUMO

In this work, we introduce a method for the soft-lithography-based fabrication of rigid microstructures and a new, simple bonding technique for use as a continuous-flow cell lysis device. While on-chip cell lysis techniques have been reported previously, these techniques generally require a long on-chip residence time, and thus cannot be performed in a rapid, continuous-flow manner. Microstructured microfluidic devices can perform mechanical lysis of cells, enabling continuous-flow lysis; however, rigid silicon-based devices require complex and expensive fabrication of each device, while polydimethylsiloxane (PMDS), the most common material used for soft lithography fabrication, is not rigid and expands under the pressures required, resulting in poor lysis performance. Here, we demonstrate the fabrication of microfluidic microstructures from off-stoichiometry thiol-ene (OSTE) polymer using soft-lithography replica molding combined with a post-assembly cure for easy bonding. With finite element simulations, we show that the rigid microstructures generate an energy dissipation rate of nearly 10(7), which is sufficient for continuous-flow cell lysis. Correspondingly, with the OSTE device we achieve lysis of highly deformable MDA-MB-231 breast cancer cells at a rate of 85%, while a comparable PDMS device leads to a lysis rate of only 40%.

5.
Biochim Biophys Acta ; 1818(5): 1205-10, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22274566

RESUMO

Nearly all molecular dynamics simulations of bacterial membranes simplify the lipid bilayer by composing it of only one or two lipids. Previous attempts of developing a model E. coli membrane have used only 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE) and (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol) POPG lipids. However, an important constituent of bacterial membranes are lipids containing a cyclopropane ring within the acyl chain. We have developed a complex membrane that more accurately reflects the diverse population of lipids within E. coli cytoplasmic membranes, including lipids with a cyclic moiety. Differences between the deuterium order profile of cyclic lipids and monounsaturated lipids are observed. Furthermore, the inclusion of the cyclopropane ring decreases the surface density of the bilayer and produces a more rigid membrane as compared to POPE/POPG membranes. Additionally, the diverse acyl chain length creates a thinner bilayer which matches the hydrophobic thickness of E. coli transmembrane proteins better than the POPE/POPG bilayer. We believe that the complex lipid bilayer more accurately describes a bacterial membrane and suggest the use of it in molecular dynamic simulations rather than simple POPE/POPG membranes.


Assuntos
Membrana Celular/química , Escherichia coli K12/química , Bicamadas Lipídicas/química , Modelos Químicos , Fosfatidilcolinas/química , Fosfatidiletanolaminas/química , Ciclopropanos/química , Interações Hidrofóbicas e Hidrofílicas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...