Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dalton Trans ; 52(32): 11130-11142, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37496325

RESUMO

Herein, two novel mononuclear transition metal Zn2+ complexes i.e. [Zn(HL)(N3)(OAc)] (NS-1) & [Zn(HL)2(ClO4)2] (NS-2) have been synthesised using a tridentate clickable Schiff base ligand, HL (2-methyl-2-((pyridin-2-ylmethyl)amino)propan-1-ol), and the polyatomic monoanions N3- and ClO4- for NS-1 and NS-2 respectively. Interestingly, NS-1 and NS-2 have been explored for the detection of Cu2+ with an LOD of 48.6 fM (response time ∼6 s) and 2.4 µM respectively through two mutually independent pathways that were studied using sophisticated methods like UV-Vis, cyclic voltammetry, ESI-MS etc. with theoretical DFT support. Herein, both chemosensors are equally responsive towards the detection of Cu2+ in aqueous as well as other targeted real field samples with appreciable recovery percentage (74.8-102%), demonstrating their practical applicability. Moreover, the detection of unbound Cu2+ in a human urine specimen was also analysed which may be helpful for the diagnosis of Cu2+-related disorders like Wilson's disease. Taking one step ahead, TLC strips have been employed for on-field detection of the targeted analytes by contact mode analysis. Additionally, the anti-cancer activity of these complexes has also been studied on breast cancer cells with the help of the MTT assay. It has been found that at a 0.5 mM dose, both NS-1 and NS-2 could kill 81.4% and 73.2% of cancer cells respectively. However, it has been found that NS-1 destroys normal cells together with cancer cells. Hence, NS-2 could be administered as a better anticancer drug for MDA-MB-231 cancer cells in comparison with NS-1. In a nutshell, the present work describes how anion-directed synthesis of two architecturally different metal complexes leads toward the detection of the same analyte via an independent chemodosimetric pathway along with their anti-cancer activities on breast cancer cells.


Assuntos
Neoplasias da Mama , Complexos de Coordenação , Humanos , Feminino , Cobre/química , Complexos de Coordenação/química , Zinco/química , Ânions , Bases de Schiff/química , Ligantes
2.
Dalton Trans ; 49(37): 13090-13099, 2020 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-32929443

RESUMO

We report two isostructural dinuclear transition metal complexes [M2(HL)2(N3)4], where M = Ni2+ (BS-1), Mn2+ (BS-2), and HL is (2-methyl-2-((pyridin-2-ylmethyl)amino)propan-1-ol) and investigate them as molecular sensors towards hazardous entities. BS-1 shows high selectivity towards the S2- and Ag+ ions, easily observed by the naked eye colour change and its detection limit in aqueous solutions for the S2- ion was calculated as 0.55 µM with a binding constant of 3.28 × 105 M-1, while the limit for the Ag+ ion is 21.8 µM. Notably, BS-2 shows good selectivity towards the Ag+ ion with a detection limit of 10.84 µM. Spectroscopic and DFT studies shed light on the mechanistic course of interaction between the host and guest entities, suggesting a sulphide-mediated reduction of the azide mechanism. In a nutshell, these simple transition metal complexes were exploited for discriminately detecting hazardous analytes with real field applications in analytical science (via. "Dip-Stick" approach) as well as engineering science, which provides a significant contribution in the recent advancement of supramolecular chemistry.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...